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Contribution of physical clusters to phase behavior
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In a multicomponent fluid mixture, each physical cluster generated as an ensemble consisting of particles
joined by each particle pair characterized by a bound $fgte u;;<0 can contribute towards prohibiting a
transition from its macroscopically homogeneous phase to its macroscopically inhomogeneous phakg. Here,
anduj; represent the relative kinetic energy and the pair potential for the paiaradj particles, respectively.
Branches constructing such physical clusters can confine unbound pafitieleparticles constituting pairs
characterized by an unbound st&g+ u;; >0) within regions surrounded by the branches, and can prohibit
the boundaries of the regions from expanding freely. Particles belonging to one of the two groups character-
izing constituents of a multicomponent fluid mixtufearticles of.A) should have a tendency to satisfy the
conditionE;; + u;;<0; particles belonging to the other gro(garticles of5) should have a tendency to satisfy
the conditionE;; + u;;>0. The pair connectedneBs; (o) proportional to the probability that a particle dfis
bound near another particle of hardly varies as densities of particles df increase, although the mean
physical cluster size diverges to infinity as the densities approach values specified at the percolation threshold.
Thus, each physical cluster should grow toward that having a larger span as densities of patddlesese.
According to this growth of physical clusters, the number of unbound particles confined by branches of the
physical clusters is enhanced. The formation of physical clusters of particlgsaain be considered as a
primary phenomenon resulting in density fluctuations. Their formation results in the confinement of particles of
B and.A within regions surrounded by the branches of the physical clusters.
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I. INTRODUCTION 1kgT and the strength of the attractive force. Hence, an
increase irk§”d™d{" should stabilize branches of physical

The statistics of cluster size diversity can contribute to theclusters. Similarly, an increase inzl/corresponding to the
statistical description of a complex system. Such an aspediffective range of the attractive force can stabilize them.
was demonstrated as the results of Monte Carlo simulations If physical clusters are formed with developed branches
[1]. It is possible even for complicated phase behavior of avhich densely surround particles constituting pairs character-
multicomponent fluid mixturg¢2] to be attributed to a con- ized by an unbound statg;; +u;;>0, then, the physical
tribution of physical clusters. The present interest is focuseglusters should restrict the particles to diffuse freely. It is,
on examining a contribution of physical clusters to phaseénoreover, expected that the physical clusters can tend to pro-
behavior of a multicomponent fluid mixture. hibit the boundaries surrounding the particles from expand-

The transition of a fluid from its gas phase to its liquid ing freely. _
phase can be driven by attractive forces among particles con- |f branches that are components of physical clusters have
stituting the fluid. The attractive forces contribute to gener-N1gh stability in a fluid, particles constituting pairs specified

ating each physical cluster as an ensemble composed of pafY @n unbound statgj; +u;; >0 can be confined within re-
ticles bound to each other by it. gions surrounded by the branches even at a high temperature.

A bound state betweenandj particles can, then, be de- The physical clusters should be developed toward extremely

) . ; . - large sizes as found in a percolation state related to the
fined by the conditiorE;; + u;; <0 [3], if the relative kinetic physical clusters, and can contribute towards preserving the
energyE;; and the pair potential;; for the pair of thel and liquid phase of the fluid at a high temperature.
j particles are used. Thus, every physical cluster mentioned In addition, particles within regions surrounded by

in the present Work_is an ensemble o_f_ particles linked to eacl,anches of physical clusters are unbound partiéles par-
other by bonds defined as the conditiép+u;;<0. ~ ticles constituting pairs characterized by an unbound state
In the present work, itis assumed that the poteria) is g +u;;>0). Local densities of particles within the regions
given as the sum o terms composed ok§Vd{"d{Vexp  should, thus, be lower than the local particle densities of the
(=zn)r (n=12,... N) having the same feature as the physical clusters.
Yukawa potential, since an estimate of phase behavior for a |n a multicomponent fluid mixture, particles interacting
multicomponent fluid mixture can proceed analytically. Here,with strongly attractive forces can effectively contribute to
the coefficients is defined ag3=1/kgT with kg the Boltz-  the formation of physical clusters. Such particles can contrib-
mann’s constant andl the temperature. The product ute to phase behavior of the fluid mixture through promoting
k§Vd(Md(™ of coefficients is proportional to both the factor the growth of physical clusters.
Particles interacting with relatively weakly attractive
forces in the fluid mixture can hardly effectively contribute
*Electronic address: kaneko@mailaps.org to the formation of physical clusters. Almost all the particles
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should be categorized as unbound particles. surrounded by branches of the physical clusters can play a
Therefore, constituents of the fluid mixture can be separole microscopically to interpret phenomena found for a spe-

rated into at least two groupd and B. The group.A is  cific fluid mixture. o

categorized as constituents that specify particles interacting For a binary fluid mixture, the viscosity anomd§] can

with strongly attractive forces between each otfigs., the ~P€ induced near the consolute point corresponding to the

particles having a tendency to satisfy the conditiui; critical transition point for demixing the two constituents

<0). The other groug is categorized as constituents”that macroscopically. It is considered for;he distribution structure

specify particles interacting with weakly attractive forces ei_havmg physical clusters to contribute to the viscosity

. ; anomaly.
ther between each other or between a particle belonging to PartiZIes belonging to the groupcan be stably confined
and a particle belonging té (i.e., the particles having a

. L within regions surrounded by branches of physical clusters,
tendency to satisfy the conditids; +u;;>0). _ if their particle sizes are small. If the particles have sizes

Although particles belonging t& can hardly effectively |arger than those of the regions, it is expected that the stable
contribute to the formation of physical clusters, the particlessonfinement of those particles becomes more difficult than
should receive passively attractive forces generated from thgat of the smaller particles.
cooperation between the exclusion of the particles due to the Such size effect can contribute to phase behavior of a
hard core potential and each attractive force between pabinary fluid mixture[6]. Similarly, the size effect can con-
ticles belonging ta4. The passively attractive forces should tribute to phase behavior of a binary fluid mixture of 2,6-
contribute to driving the phase separation of particles betutidine and water near the consolute point also, since the
longing to B, although the features of the forces cannot besize of a 2,6-lutidine molecule is much larger than that of a
simple owing to a contribution of physical clusters. water molecule.

The phase separation of particles belongingdt@should Nevertheless, 2,6-lutidine molecules should be considered
be driven by the strongly attractive interaction forces amongs molecules belonging to the grodpwith water molecules.
particles belonging tod. The formation of physical clusters The attractive force between two 2,6-lutidine molecules, as
should be directly influenced by an increase in particles bewell as that between a 2,6-lutidine molecule and a water
longing to A. molecule cannot be ignored, although these attractive forces

If particles added into a fluid interact with a sufficiently are weaker than the attractive force between two water mol-
strongly attractive force between one of them and a particlecules. Thus, two kinds of physical clusters can be generated
composed of the fluid, the addition of the particles shouldin a binary fluid mixture of 2,6-lutidine and water; those are
increase the stabilization of the physical clusters in the fluidwater molecule clusters that are principally composed of wa-
If an interaction similar to the interaction caused by theter molecules, and the others are 2,6-lutidine molecule clus-
added particles is done by atoms of bismuth added into &rs that are principally composed of 2,6-lutidine molecules.
mercury fluid maintained at low density at a temperatureA partial amount of 2,6-lutidine molecules can have a ten-
near the critical point, bismuth atoms migrating into physicaldency to enter regions surrounded by branches of water mol-
clusters of mercury atoms should increase the stabilization afcule clusters. However, the size effect mentioned above
the physical clusters. The stabilization of the physical clusshould induce the phase separation of 2,6-lutidine molecules,
ters due to the addition of bismuth atoms should enhance th@hen 2,6-lutidine molecules in the binary fluid mixture ex-
electrical conductivity of the mercury fluid, since the physi-ceed a specific amount. Another partial amount of 2,6-
cal clusters can play a role as paths helping electrons ttutidine molecules should participate in the formation of a
migrate. Furthermore, their stabilization should reduce thevater molecule cluster with water molecules. These 2,6-
pressure of the mercury fluid, since branches of the stabilizetlitidine molecules can contribute towards cutting branches
physical clusters can confine unbound mercury atoms. Suchf the water molecule cluster, since the attractive force be-
phenomena due to the addition of bismuth atoms were exween two 2,6-lutidine molecules should be weaker than that
perimentally demonstratdd]. between a water molecule and a 2,6-lutidine molecule. Thus,

However, the stability of physical clusters in a fluid mix- 2,6-lutidine molecules participating in the formation of water
ture should be reduced, if the temperature of the fluid mix-molecule clusters should contribute to expand sizes of the
ture rises. It can, then, become difficult for branches of theegions surrounded by branches of the water molecule clus-
physical clusters to stably confine particles belonging to theers in cooperation with a temperature effect. If regions sur-
group B, within regions surrounded by their branches. Thisrounded by branches of the water molecule clusters expand,
phenomenon can disturb a macroscopically homogeneoug6-lutidine molecules can readily confine within the regions.
phase of the fluid mixture. Even 2,6-lutidine molecule clusters should, then, be found

Physical clusters not only contribute towards prohibiting awithin the regions, if the regions are sufficiently large. Fur-
transition from a liquid phase of a fluid to its gas phase, buthermore, the contribution of 2,6-lutidine molecules towards
also towards prohibiting a transition from a macroscopicallycutting branches of the water molecule cluster can decrease
homogeneous phase of a multicomponent fluid mixture to itshe average extent of water molecule clusters, and as a result,
macroscopically inhomogeneous phase. Thus, a multicompateclining water molecule clusters should allow 2,6-lutidine
nent fluid mixture can be considered as a good medium fomolecule clusters to exist among them. It is, thus, expected
examining a contribution of physical clusters to phase behavthat a macroscopically homogeneous mixture of 2,6-lutidine
ior. It is, moreover, expected that a distribution structure thatind water should be generated, although the microscopic dis-
is constructed from physical clusters and unbound particlesribution of water molecules and 2,6-lutidine molecules is
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nonuniform. In addition, the microscopically nonuniform gests that if a physical cluster has a fractal structure, its struc-
distribution of 2,6-lutidine molecules occurring in binary ture can rely on a feature of;(r). If the asymptotic behav-
fluid mixtures of 2,6-lutidine and water near the consoluteior of u;(r) for r>1 is expressed asij(r)~1/r, the
point can be realized through the aggregation phenomena asymptotic behavior oP;;(r) suggests a physical cluster to
colloidal particleq 7]. have a structure with a fractal dimension 1.5. The growth of
Density fluctuations in a specific constituent in a multi- a physical cluster of a particular constituent can result from
component fluid mixture can induce density fluctuations forthe contact of small physical clusters. This growth process
other constituents, as predicted from the aggregation of thgan be similar to that known as cluster-cluster aggregation.
colloidal particles. This phenomenon can be a factor compliyy addition, the distribution of particles resulting from
cating a phase diagram for a multicomponent fluid mixture ¢|,ster-cluster aggregation leads to a fractal structure, while

Monte Carlo simulation revealed such complicated phasg o gimensiond. of the fractal structure is known o,
diagrams even for a binary fluid mixture composed of par-_ 4 75[11] f

ticles interacting with the attractive force due to a square- The mean size of physical clusters can be estimated using

well potential[2]. . . L
Even if colloidal particles having mesoscopic sizes arethe pair connectednes; (r) [9]. An equation for estimating

regarded as hard core spheres in the absence of attractimee'r Mmean siz€ IS given In Se_c. IIC. Thus, a (;r|ter|on for the
forces, it is possible for passively attractive forces to be gendrOWth Of physical clusters into macroscopic size can be
erated among the colloidal particles immersed in a molecula@/Ven as that for the growth of the mean size of the physical
fluid mixture. At a temperature near the consolute point ofclusters. Using this measure, it is possible to estimate the
the fluid mixture, a distribution structure that is constructedPercolation threshold at which the physical clusters can grow
from physical clusters and unbound molecules surrounded by/ithout bounds according to the contact between physical
branches of the physical clusters can vary considerably. If thelusters. Such estimates on the percolation threshold pro-
average extent of the physical clusters increases beyond thégeded analytically for single-component fluids composed of
comparable with the diameter of a colloidal particle, the pasParticles interacting via the Yukawa potentjaD,12. More-
sively attractive forces among the colloidal particles should®Ver, such an estimate of the percolation threshold proceeded
be strengthened, since the surface of a colloidal particle carnalytically for a multicomponent fluid composed of par-
not contribute to making a physical cluster grow. Thus, it isticles interacting vi_a a potential having the same feature as
expected that such attractive forces can contribute to Casimife Yukawa potentigl13]. 3 .
forces, which can act among colloidal particles between According to the use of a specific Yukawa potential, an
parallel platesimmersed within a binary fluid mixture near accurate and efficient estimation of the pair correlation func-
the consolute pointor a one-component fluid near the tion g;;(r) is possible for a binary fluid mixture over the
liquid-vapor critical transition point[8]. entirer range[14]. In the present work, the pair correlation

When physical clusters are formed in a fluid, particlesfunctiong;;(r) at a specific pointr(=o7;) will be estimated
constituting the fluid can be classified into two groups. Ondor the potential gu;; having terms composed of
group is categorized as an ensemble of pair particles that dVdVexp(-zr)/r (n=1,2, ... N), using an analytical
belong to the same physical cluster. The other group is casolution[15,1¢ of the Ornstein-Zernike equation due to the
egorized as an ensemble of pair particles that do not belongiean spherical approximaticiMSA). The pair correlation
to the same physical cluster. This categorization divides théunction derived from this analytical solution is shown in the
pair correlation functiong;;(r) into a correlation function Appendix. The pair connectedneBg(r) can be obtained for
Pi;(r) and the other correlation functial; (r) [9]. that potential as summarized in Sec. Il.

According to the above categorization, particles belong- In order to estimate phase behavior for specific two-
ing to the group.A should significantly contribute to the component fluidsP;;(r) andg;;(r) will be given in Sec. IlI.
magnitude ofP;;(r), since these particles can actively con- Each two-component fluid discussed in Sec. Il is a mixture
tribute to the formation of physical clusters. Particles belongin which hard core spheres=1 particles interacting with
ing to the group3 should relatively contribute to the magni- an attractive force are mixed with hard core spheiesX
tude of Dj;(r), since these particles should have a tendencyarticles in the absence of attractive forces. In addition, the
to distribute within regions surrounded by branches of physii =1 particles correspond to particles belonging to the group
cal clusters. Thus, a distribution structure of particles can bed, and thei =2 particles correspond to particles belonging
characterized b;;(r) andD;;(r) that are able to describe a to the groups.
multicomponent fluid mixture.

The correlation functiorP;; (r) called the pair connected-
ness should rapidly decay asncreases beyond the average Il. PAIR CONNECTEDNESS
extent of physical clusters. The decayZf(r) for r should
not depend on the average extent of physical clustersisif
sufficiently large. Thus, the asymptotic behavior Bf(r) The pair connectednes;(r) is defined as the probabil-
for r>1 should be expressed & (r)~g;;(r), smqegij(r) ity pip;jPij(r)dr;dr; that both the particle in a volume ele-
is given by the sunP;;(r) +D;;(r). The asymptotic behav- mentdr; and thej particle in a volume elemenlr; belong to
ior of P;;(r) for r>1 can be approximately expressed asthe same physical cluster. In the aboye,and p; are the
Pij(r)~[—,8uij(r)]3’2 [10]. This asymptotic behavior sug- densities of theé andj particles, respectively, for a uniform

A. A closure scheme similar to the MSA
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distribution. The probability that thieparticle indr; and the  SinceP;; is proportional to the probability that bothandj
j particle indr; do not belong to the same cluster is ex- particles belong to the same physical cluster, each term on
pressed apip;D;;(r)dr;dr;. the right-hand side of Ed2.2) has a magnitude proportional
The pair connectednes;(r) should satisfy an integral to that probability. This fact means that each term on the
equation derived from classifying Mayer’'s mathematicalright-hand side of Eq(2.2) is proportional to the probability
clusters(diagrams defined in terms 6bonds which consti-  that both thei andj particles belong to the same physical
tute g;; . The Mayerf functionfij:e‘ﬁuii—l is represented cluster via the contribution of other particular particles
as the sum of two factors; one factor is expressed‘i]ras (kq,ky, .. .), although the first term is proportional to the
contributing to the bound state, and the other factor is exprobability without the contribution of other particular par-
pressed as] which does not contribute to the bound state.ticles. Thus, the correlation functio@;j is proportional to
The factorsf;; andfy can be given af;ﬁzpij(r)e*ﬁuu and the probability that both.thé and | partigles 'belong to the
f¥=[1—pj;(r)]e P4 —1, respectively, using the probabil- Same physical cluster Wlthclut the contribution of other par-
ity, p;;(r), that a pair ofi andj particles satisfies the condi- ticular particles. ThereforeC;; should be defined as a func-

tion E;; +u;;<0. The probabilityp;;(r) should be given as tion proportional to the probability that both thendj par-
ticles are found within the simplest bonding structure.

o [ TPY Equation(2.1) has the same mathematical structure as the
pij(r)=2m fo y dy, Ornstein-Zernike equation. The Ornstein-Zernike equation
can be solved analytically for some fluids, if the MSA is
wherey is defined as,:[,gE”]m [3]. Thus, Mayer’s math-  used. In the MSA, the direct correlation.fun.ctiom is given
ematical clusters constitutingj; can be expressed as math- as the sum of the short-ranged contributiasf X and the
ematical clusters consisting df; and f}. If eachf;; is  long-ranged contribution- Buj;). If C;; can be also given
defined in terms of af* bond, thef * bond corresponds to as such a sum, the procedure for solving E2j1) can be
the pair of particles satisfying the conditio;+u;;(r) simplified, as can be found in the proc_ed_ures concerning the
<0. Particles jointed by " bonds form a physical cluster. If MSA. Fortunately, a closure scheme similar to the MSA can
the physical cluster includeisand j particles, the physical be obtained for the integral equation as the sum of a short-
cluster includes the particles contributing to a diagram havranged contribution and a long-ranged contribufib8], and
ing at least one path of all the" bonds between the root C€an be given as
pointsi andj, at which thei andj particles are located. Such 4
diagrams are those that contribute Rg , according to the +iy _ 0+ T (132 B
definition of P;; . The collection of diagrams contributing to Ci(N=Cj N+ 3\/;[ Buij (D17 for Buij(r)<0.
P; i can, then, be separated into the sum of two parts, namely, 2.3
C;; and Nf]r The parthjr is the contribution of non-nodal )
diagrams having at least one path of il bonds between !N the same manner as the assumption made atjoiar the
andj. The partN;| represents the contribution of nodal dia- MSA, the short-ranged contributio@;; (r) is assumed as
grams having at least one path of &ill bonds betweenand
j. Hence,ijr can be given by the convolution integral of the
product ofC;; and Pij . The convolution integral can result wherea;; is given aso; = (o, + ;) for the diametewr; of
in an integral equation that should be satisfied®y. There-  the hard core of particle and the diameter; of the hard
fore, the pair connectedneBg can be given as a solution of core of particleg. The most completely short-ranged interac-
the integral equatiof9]. Such an integral equation can be tion betweeni andj particles should be attributed to hard
expressed fol constituents as core potentials. The hard core potentials do not directly con-
c tribute to the interaction between them for oy; . Thus, Eq.
Pij(f)=C§(f)+k§=:l ka' CiJlr<(|r_rk|)ij(rk)drkv Eg::)ldsgggcljt:dibnz ]tléstt;::ae(lj\/lgi_an approximate expression as

Cif(r)=0 for r=0y;, (2.4

(2.1 If it is assumed that the potentiglu;; is given as
: . N
where L is the number of constituents. expl—z,r)
- . . _ = Mmyngm 22 =77
The meaning of the correlation functid®;; can be re- ﬂ“ij(r)_zl kg"di™d;" r for =0,
vealed from Eq.2.1), since Eq.(2.1) can be solved recur- (2.5

sively for P;; to give

g the closure scheme given by E@®.3) can be expressed as

Pij=Cjj+ > P j Cik,Cr,dri 4 [ ¥
Ki=1 L 1T crHin=c%(r+—— kpdMdPexp(—z.r) | —.

1 |]() IJ() 3\/; nzl oY Mj F( n) r322 )

2.6

Loz
+ > 21 Pklpsz’ JCﬂlcljlkzczzjdrkldrkﬁ“'-

k=t ko= Here, 1%, represents a feature corresponding to the effective

(2.2 range of the attractive force betweemnd | particles. The
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factor k(()”) is proportional to the factor kAT, and is also be extracted from the terms included in the factor
proportional to the strength of a common effect contributing[Enkgd{‘d}‘exp(—znr)]g’2 in Eqg. (2.6) by considering an as-
to every attractive force acting between particles of each pasumption made as
ticle pair. A factord"™ represents a feature of amparticle,
and the strength of a common effect contributing to every
interaction occurring between theparticle and another par-
ticle. Moreover, the feature of thieparticle does not influ-
ence the magnitude cbdg”). According to this assumption, the factor which should con-
Significant terms which should contribute to the tribute to the long-ranged contribution of the closure scheme,
long-ranged contribution of the closure scheme, carshould be modified as

0<zyszps- - -szy<o>. (2.79

3/2

N N
3 exp(zyr

> kodi'dj'exp(—z,r) *[kédildjlexq—zlr)]y2 1+ — expzir)

n=1

Kd"dMexp — z,r) |. 2.7b
2 Kldkd! 2, kadldfexp(~z,r) .79

Thus, the significant terms which should be considered in the long-ranged contribution of the closure scheme, can be found
from Eq. (2.7D.

Furthermore, two approximate expressions for the factar){#/in Eq. (2.6) should be derived in order to avoid math-
ematical difficulty due to (1)®? in solving Eq.(2.1) analytically. The decrease Kﬁﬁ(r) due to each term of exponential
function can be much more dominant than that due to the factoy3(4/asr increases. By considering this effect, one of the
approximate expressions is represented aga)i/L/r) instead of (1f)%2 The other can be derived by requiring the relation
(1/r)¥2=e~7'"r for 0<r—a<1, and is represented as'{®/ \/a)(1/r)exd —r/(2a)] instead of (1f)¥2 Here, the coefficierd
is a constant.

By considering the above approximations with E2,.7b, two approximate expressions for a long-ranged contribution of
the closure scheme can be found, and can derive two approximate expressions(Bab)EGhese two approximate expres-
sions are characterized by the paraméterand can be expressed as

N ~
o o o exp(—z,r
cin=cin+ 3, ke 28A @279
n=1
where
0<z,<7,<73<---, (2.70
(3/2)z;+a tn(f,) (n=1, f.=1, e*?
Zn= -1 12 (2.7
z,+(1/2)z;+a 'In(f,)) (n=23,... N, f.=1, e,
and
Lo [ A3V T HKE) P ) IH A (n=1, f=1, &)
kod;'dj'= 2.7
oY Mj 2fc(\/;\/a)7l(kgl))lIZkgn)(di(l))l/Zdi(n)(dj(l))UZdJ(n) (n=2,3, o /\[, f(::l, e1/2). ( f)

Here, the maximum hard sphere diameter of particles distribthat the long-ranged contribution described by the factor
uted in the fluid mixture is applied as the coefficianwWhen  (1/)%? in Eq. (2.6) is approximated as (1B)(1fr). The
the closure expressed as EB.70 is used, the integral equa- alternative approximation given by Eq.79 for f.=e'?
tion system given by Eqg92.1) and (2.79 can be exactly somewhat overestimates the deca)ng’f(r) dependent onm,
solved as known from solving the Ornstein-Zernike equatiorsince the long-ranged contribution described by the factor
system[15,16 which has the Yukawa closure due to the (1/r)%? in Eq. (2.6) is approximated ase{’?\/a)(1/r)exp
MSA. [—r/(2a)].

In addition, the approximation given by E.79 for f. According to a previous study on Yukawa fluifi0],
=1 somewhat overestimates the long-ranged contribution opverestimation of the long-ranged contribution@f (r) can
Cﬁ(r), since the approximation specified f6f=1 means lead to an overestimation of 1?/&8{‘8]-”) at the percolation
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threshold. The diagram of the percolation threshold for over- d
estimating the long-ranged contribution, however, has the 2wrCﬁ(r)=—aQij(r)+Z Pk
same pattern as that for overestimating the decayiﬁfr). k=1

o d
. , , Xf ij(t)d_Qik(r+t)dt
B. A solution of the integral equation supl Ny Agi—r] r
Based on a mathematical procedure similar to that for the for N\ji<r<oe, (2.8b

Orstein-Zernike equatiofl5,17,1§, the use of Baxter'Q ] ] L ]
function[17] givesP;;(r) andC;; (r) satisfying Eq.(2.1) for yvhere)\gi is defined as\j; =3 (a;— ;). The functionQ;;(r)
the £-component fluid mixture. They are expressed as in Eqs.(2.89 and(2.8b is introduced as

bij(k>=6”—(pipJ-)l’waeikai,-u)dr, (2.80

d N
2mrPyj(r)=— 3 Qy(n+2m X py J
k=1 where &;=0(i#}) and &;=1. The functionQ;;(r) may

w have a specific form that includes unknown coefficients
X f)\ Qyj(D(r —t)Py(r —t|)dt X{"M/x andP", and can be expressed as
jk “n 5
for Aji=r<e, (2.89 Qij(r)= Ql](r)+2 gioi - _E Xj{"Pi"e 072 nf
and ()\ji<r, NZZ), (28@
|
at a1 2 1 12 - - -
Q” E _O_io_j_l_ 2 Xnum znoJ/2+0_0_]Pn _2 X?mpjmeznojlz (e—znr_e—znaij)
1= o X m=1 Z,0; Xm=1
\ji<r<a;, N=2), (2.80
|
and can be exactly determined according to the restrictions men-
Q%(r)=0 (oy=<r, N=2). (2.8f)  tioned above. As a result, unknown coefficiedts" and x
. J are given as
In addition, an unknown coefficiem]f‘ is related to the pair K1 y12
connectedness and is expressed as ) ]
XH o x#?
Lo ‘ :
P?zlzlzl b — o (z a',) f P|J(T/s)e rdr K K 210'/2(2 U) 1422 _ezzojIZ(izo_j)leZ)
n = =~ hd -
s Zr(]28g) 6 zlaJIZ(Zlo_j) lXZl eZZO'jIZ(ZZO.j)*IXll
. . (2.9a
where ¢, represents the volume fraction defined as
- and
¢|E€p|gl3, (2.8h x=x11y22_ 12,21 (2.9b
where

The coeﬁ‘icientP]n defined by EQq.(2.89 must always be
positive, sincea}‘/crj should be positive for arbitrary values ‘
of j andn. According to Eq(2.89), this coefficient should be x" 52
small, if the effective range characterized binli/s short.

The correlation functiorC;: i (r) given by Eq.(2.80) must

Zn0'|/ze* Em0'|/2

. .odMfd™ 1
Zmo|€ Zn"l_ m

cr|(zn+zm) g\ g zma|

m

d
n U—'Yﬂ"“+ P{"Zﬂ‘”)
|

satisfy Egs.(2.4) and(2.70. The pair connectednes¥; (r) +P ¢ (m=12; n=1,2),
must satisfyP;;(r)=0 forr <oj;, since hard core potentials
contribute to the interaction betweérand|j particles. This (2.99

relation must be also satisfied by the pair connectedness .

P”(r) given by Eq.(2.8a. Thus, the behavior oP;;(r) ymn= _ 5 45 3 — 230 12 n=12
given by Eq.(2.89 and the behavior of [ (r) given by Eq. ez [zt 2m)o = zmone =] (M=1.2; n=12),
(2.8b are restricted. Unknown coefﬁmenlﬁ"“ x, andPy" (2.90
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and

Zmn_ I:Zno'lezmgj —(ZntZm) o1+ 20, e—zngj],
ZmO'l Zn0'|

(m=1,2; n=1,2. (2.9
Other unknown coe]‘ficientE’Jn are given as
RS o 2
noil2_2 12
2me Wi X XZ X{"P;
Z, Yj r=1
6 2 2 2 ¢ ~Zo/2
=2 2 2 2 | XX PP
Tm=1r=1s=11=1 (Zn+ 2z o
am
X —LYW“+PPzWﬂ =0. (2.9f)

In addition, Egs.(2.99—(2.9f) are results obtained faiV'
=2.

The behavior of the pair connectedneBg(r) can be
readily estimated at the particular distanceo;; where the
hard spheres of an particle and g particle contact each
other, if it is considered for Eq2.83 to be given as a con-
tinuous function ofr. By considering the relatioR;;(r)=0
forr<oj;, Eq.(2.89 given as a continuous function otan
lead to the magnitude d?;;(r) given atr=o; as

2 2 n
1 o1 .4
el ! pn
P|](O'|]) 2 ™ o) X mE]_ nzl (Zn0'| o, P )

— 2, 01/2yynMpMm
xXe n7EXP .

(2.10
In addition, Eq.(2.10 is a result obtained faN=2

C. Mean size of physical clusters

The equilibrium numben,, of physical clusters consisting
of v particles can be related to the pair connectedigss

PHYSICAL REVIEW E 66, 051502 (2002

Foriani[9]. The mean physical cluster si&is given byS
=(=,v%n,)/(Z,vn,). Thus, the mean physical cluster sie

is the mean number of particles per physical cluster. The
mean physical cluster sizécan be related to the pair con-

nectednes®;; as
L

-1L L
IZl Pk) ; 2 plpjf Plj(r r. (211

The mean physical cluster si&given by Eq.(2.11) can

be rewritten as
¢yl o1
2
k=1 ¢I

SOEPS
since the relation betweef@k’jl(O) andPj; is given owing to
Eq.(2.1) as
L

3. 0(0)8(0) =, + ()2 Py(r)ar, (2120
k=1

S=1+

-1/2

2
651(0)} . (2129

whereéij(O) for V=2 can be given as

1/2 6 1/2
Vo n nmpm
Q,(0)= 5—+;5212? @UJ Q ;¢Q;) XiP
(2.129
with
e il e’ —1—27,0, dn
Q= Pl= (Z0+1)|.
2,0 240
(2.129

Therefore, the mean physical cluster size diverges to infinity
if Q;;(0) reaches infinity. The percolation due to the contact
of physical clusters can be generated under a condition sat-
isfying Q;;1(0)="c=.

For a two-component mixturel=2), Eq.(2.123 with

according to the formula given by Coniglio, DeAngelis, andthe use of Eqs(2.93, (2.99, and(2.129 results in

¢2( ) :| [ : p Z.01y—1
1+Ezn0'|en X"
¢1 =1

=
( eEllrl/Z

2,0

xQf| -

7,0 Zy0

62101/2 1
X

Z,0,€"72X"

2101 207

2 2

6 z,0,6n72

le__
T X
o1 by 01 2 z -
+(02) [(¢102) T X

2
e*Zm(r:L/Z(Eno_leZn(rl) - lXTrP&] ] )

mO2

_ ¢2e2m02/2Q2 e EmA21

ezlo'|/2 .
Q| =——(zy01€77) " IX?Pl - =
. C . 1 C .
e 220'|/2( 2,0 eZn0'|) - 1X21P|1 + - (Zn‘TI ezno'|) - 1X11P|2
12 ——(2n0,€%72) PIP3— 7, 01 €% 71X

e 1/2
Zmo1)| . .
( h1po - ) ezmolle 1€ Zmhi2— ¢2ezm02/2Qf2“ e

Zn01

mO 2

e220'|/2

(Zno_lezn(f|) —1X12P|2 + ezz(r|/2

230

eizgl/zQiQ%e_EZ)‘ 12)

+ ¢1epa(Qle2722Q2

410212 gZh1p -1
1o ———m%a@%ﬂ)lpp
2109 230

2
zm02/2( Zno_zeznaz) - 1X21 rPrz]

1/2
z 12m
) e?m71 Ql

(2.13
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If each physical cluster is formed as an ensemble of parFor this condition, the relatiod/o=1 is satisfied owing to
ticles bound to each other satisfying the conditiBp+ u;; Eq. (3.39. Moreover, Eqs(3.39 and(3.3b result in
=<0, then, the mean physical cluster sizeSigiven as Eq.
(2.13. Therefore, the percolation threshold can be readily K 8
estimated for a two-component mixture systefi<2) com- c=——f,
posed of particles interacting with attractive forces due to the z N
two-term potential (/=2), using Eq.(2.13. (3.5

2 -1 de 3/2
ZO‘+§|n(fc)} (7) (fe=1, e'?).

Ill. SPECIFIC FLUIDS A specific fluid mixture described by Eq&8.1)—(3.20 is
a two-component fluid mixture composed of a constituent
(i=1 particles and the other constituent£2 particles. i
1. A specific fluid =1 particles interact between each other through the hard

- . core potential (<o) and an attractive forcez{>zo) and
All the coefficients expressed &? in Eq. (2.9f) must be i =2 particles only through the hard core potentiek(o).

assessed to evaluate the percolatio_n threshold for a fluid mixI:he fluid mixture is that in which hard core spheres interact-
ture composed of particles interacting through the two-term

X - . . S ing with the attractive force are mixed with hard core spheres
potent_lal (V=2). Their eva]uatpn can b? S'm.p"f'e.d for 2 in the absence of attractive forces.
specific two-component fluid mixture. This fluid mixture is

A. Formulas for evaluating correlation functions

specified as 2. The pair connectedness;R o)
0170270, (3.1) According to Eq.(2.10, the pair connectednes; (o)
_ for i andj particles distributed in the fluid mixture character-
71=2, 0<z0<z0, Zz0>1, (323 jzed by Eqs(3.49—(3.49 can be found as
d¥ d ds d® d® s 8 5 . . .
oo 0= o <1, oo, o 0<—. P (o) ze . (d 1 P 1<d)2 —_ 1d
=—e Y| ——c—Pi|—|5| =] et c——
(3.2b 1 6 o 70 Yo l2\lo 720 O
kV=k, and 0<k{P<1. (3.20 . 1 . . -t
° ° X(1-e ™)+ (e —2+e ™) (PD?| |
Then, Egs(2.7¢ and (2.7f) for n=1 result in
3 (3.639
z,0==z,0+In(fy), (3.33

2 P12(0')=0, PZl(O'):O, and P22(0'):0 (36b)
7, kb a ajl 4 k(D) 32/ gV dJ(l) 32 . .
2% oo ?fc\/zlcr N o o - Equation(3.63 can be derived for,# 0. It does not, how-
17 m ! 3.3h ever, include¢,. Therefore,P{,(o) is independent ofp,.
(83D This effect is caused by the behavior B} (0<P3<1 for

Thus, Eq.(3.3b) leads to the simplest assumption made as 0<d3/o<1).

- D In order to evaluate Eq3.6a, the coefficien] must be

df (di¥ 33 estimated. The coefficien®!" satisfying the relations given

o ol (3.39 by Egs.(3.42—(3.40 can be derived from Eq2.9f), and are

expressed as
Therefore, the parameters for estimating the pair connected-

ness, according to Eq&2.7e—(2.7f), Egs.(3.1)—(3.29, and

o

] ~ 2 ~
Eg. (3.30, can be expressed as 12e‘2"5 E¢l E(E) e 204 ,i 9(1—e‘2")Pi
70 2\o 720 O
2,=2, 0<zo<z,0, Zy0>1, (3.439 ) i .
Sl 1 2 2 y 5(e7=2+e ) (P)°| —|5| = e “+t——
i:gy Ogﬁgl, ﬁ:%:f, OSE, 2 2 g ZO'O.
g1 g (0] 01 (0] g g 1
B4D S (1—e Pt 5 (e —2+e7%)(P1)? P}
ki=k, and O<kZ<1. (3.49 )
e_ZO'/2 P%)Z . . . a .
In addition, it can become somewhat easy to assess ther —————| (e*—2+e ?7)P;+ 20;(2—672") =0,
pair connectednesB;;(o) and the pair correlation function 2z
gij(o), if a specific condition given a¥ o=1 is considered. (3.7
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Pi~0, P?~0, and P3~0. (3.70

The coefficientP} can be ignored for & d/o<1 as known
from Eq.(3.7b. As a result, Eq(3.739 does not includeb,,

although it is a formula derived fap,#0. ThereforeP} is

independent ofp,.

In addition, P4 and P3 for z,0>1 can behave as
1(d\® .
2\ ©

1d - 1
+——(1-e ?)P;
Zz0 0

220'
(8la)

1
— Pi
o

. . d
eZZUF%%ZG'P%
o

-1
. (38

1 -z 1,2
+§(ez"—2+e 2 (P7)

3. The percolation threshold

The percolation threshold for the fluid mixture character-

PHYSICAL REVIEW E 66, 051502 (2002

at which the mean physical cluster si3eexpressed by Eq.
(2.13 diverges to infinity. The magnitude &¥} at the per-
colation threshold can be given as

-

1y do - ~2 z s -1
P1=ZU;[(ZO') (e*"—2+e %) —2e""+2z0+ 2]

X{zo+e 27— {[1-(z0)?](e " —2)e 2+ 2},
3.9

Equation(3.9) is derived for¢,#0. It does not, however,
include ¢,, since terms wittP% can be ignored owing to 0

<P}<1 for 0<d}/o<1. Therefore, the percolation thresh-
old determined by Eqs(3.7a and (3.9) is independent of
b2

4. The pair correlation function g (o)

For a two-component fluid mixture specified by Egs.

ized by Egs(3.49—(3.40 is determined as a particular state (3.1)—(3.29, Eq. (A1) can be simplified as

1 3¢+, 1 12[3 11
gij(U)NKJFELAz—Z—g[—K{K(%Jﬂi)z)—*‘

1 1\d
27 ze)a

1+zg/2 d 3 d 3
$1— |4

3
+ 1 (b1t ) W¢1;+K 1578

20 20 2
2
3 3
+ 3 Po(z0) 2 4B+ ¢

1
1+=

1 e_ zo

§+ z0 2 zo

0

d (df”

(o

> B

k=1

e—ZU‘) 2

1(11

e 12 1
_ on(1) op(l)_ —— —_

g 0

3
520+ ($1+ o) | W1(20) + Dol 20)

2
E ¢keZUB(kl)
k=1

2 (1) 2 2y -1
dV  121+z0/2) d , 12
L A S op(1l)__ —© zop(1)
x[lzl ¢,[ o Aze)? Vgt Po(zo)e B 3 Va(z0) 2 4ie™ B , (3.10
whereA=1-3F ¢, (£L=2), ¥ (z0)=(z0) [1—20/2— (1+2z0/2)e ?"], and®(z0)=(z0) (1—e ).
A coefficient expressed & " in Eq. (3.10 is defined as
z .ezn”iB(n)zlzé 1) ﬂ “nCi e@2Znhil @Zno] J'we*T iq(7/s)rd (3.113
nTj [— = | o (ZnUI)Z 0 gll 7l TaT .

The coefficientB(" defined by Eq(3.118 must always be
positive, sincadi(“)/ o; should be positive for arbitrary values

of i andn.

According to Eq(3.113, this coefficient should be small,

if the effective range characterized byz14is short. In fact,
Egs.(A2a) and(A3a) for n=2 result in

lim eZZ"BJ(Z)ZO.

Zp—®

(3.11B

S= Zr.|

Thus, the coefficient8{?) and B{?) are not included in Eq.
(3.10. The above relation helps readily to derive Eg8.10

from Eq.(A1). In addition, even a produgyoe®’B{* has a
finite value as Iirgzaﬁm[zzanZUBj(z)]<oc, according to Egs.

(A2a) and (A3a).

Equation(A2a) for n=1 andj=1 and Eq.(A2a) for n

=1 andj=2 can result in two equations given as
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k d 20 (dY 1x1+20/2) 2 212
~A_ —a—Z0 R Zo (1)__ zop(1)
0~6_ —e 2 ( - A(z0)? b1— +<I>0(20)e B! v (za)E $e*BY
2 (1) 2
d® 121+ z0/2)
+E (—1)" Z"B(l)Z ¢|( W¢ +<I>o(Zo)eZ"B(1)——\If 20)2 ¢ eZ”B(1)>
1 é O PN l+zg2 d 8 d 3[ [ 1 3
+5|:1 ol A\ 1tzzot+ ¢ (P1+ d2) “zo)? 1, T, +§ZU+K(¢1+ $2)
2 2 d d 2
X W1 (z0) + Do z0r) k§=)1 qbkez"B(kl)] ;+z(rq>0(z(r);—z<r[q>o(m)]2h§=)l (—1)“ez"B.ﬂ”}, (3.123
2 2 2
d"  12(1+z0/2) 3 12
0~2, ¢ ( . —A(Z—)¢ %) dy(zmreBd- —‘1’1(20)2 $re’’ByY gl Szt FhPo(z0) — T bW a(z0)

[4

(¢p1+ ¢2))

1 3

1(20' +(D0(ZO')

> w

1+z0/2
(z0)*

d 3 d 34
b1ty bR

| w

Mk

2
+Wy(z0) D, ¢re?’BY
h=1

12
iy

2+zo
2(Zo')

d

|

2

1
1+ 220’+ (¢>1+ b5)

zop(1) 12 1 3
BV~ | 1+ 520+ 1(g1+ ¢2)
2 L2
zop(1) s
3, oot 15 5 0o
1 3
1+§ZU+K(¢1+¢2)
2o (1) d 3d
1(ZU)¢| O(ZU)5|2 e B| _ZU;5|1+K;¢1
3
_Z(T(I)0(Z(T)5|h+z[q)0(z(f)+4ZO"P1(ZO’)]¢)h

& 12
+ hzl ( (I)O(ZO') 6|h - K‘ﬁh‘yl(ZU)) eZUBﬁl):|

1+zog/l2 d 3 d
202 b1ty

1
1+ -zo

12
zop(l)_ —=
Bi >

A

Vi (zo)+Dy(zo)

2 2
2 ¢hemB§11)]

SCARET: 2420 d
Yol T 2202 1

1 3
1+ EZU+K(¢1+ b5)

eZ(TBEl)]

3 12
O+ K¢|‘bo(20)— K¢|‘I’1(Z<T)

(3.12b

Another restriction due to a relatiay; (o) =g;; (o) leads to a relation given as

2
> (-1)'e*BY
=1

12
O~ _<4_220'+ K(¢l+ d)z)

4+2z0+ —(¢l+ b5)

2
—(1—e*2">|§1 (-

d
1)'e*B{V+ z(r—)
(o)

Thus, the coefficient8{") and B{") in Eq. (3.10 can be
assessed using Eq8.123, (3.12h, and(3.129.

However, values being suitable f&") and B{" should
be selected. The correlation functign,(r) should be pro-
portional to the probability that ain=2 particle exists in a

2
—(za)zllfl(zo)l_El $e*BfM -
2 d\[/ 2
(;1 (—1)'B|(1)+Z¢r;){(5—(20)2‘%(20))21 ®

d
(1-e7) 2, ¢ie™BiV+ 20— ¢,

1+ ! d
EZO’ ; d’l
2

IeZ(TBl(l)_

1 1 d
2 t320) 5

2

2l (3.120

Ad
zo+(zo)3= —e
30

a distance from ani=1 particle. Henceg,(r) should be-
come zero, when=2 particles separate from a macroscopi-
cally homogeneous phase mixed with 1 particles. Near a
point at which this phase separation occugg,r) should
extremely rapidly decay to zero asincreases. The coeffi-

volume elementlr, located at a particular place specified by cientB(zl) is an integral involvingg,,(r) as an integrand, as
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known from Eq. (3.113 with coefficients given by Eq. physical cluster to have a fractal structure, since an approxi-
(3.2b. The coefficienB{" is an integral involvingy;,(r) as  mate behavior ofPii- r) for r=>1 can be expressed as
an integrand, as known from E¢3.113 with coefficients Pij(r)~[—ﬁuij(r)]3’ [10]. Branches constructing such
given by Eq.(3.2b. Therefore,B(zl) should be much smaller physical clusters should be developed in a fluid mixture as
than B(ll)- when the phase separation iof 2 particles oc- 1 increases, since they should stabilize for the increase in
curs. b1

In addition, numerical pairs oB{) and BS" assessed ~ The development of the branches suggests that the
from Egs.(3.123—(3.129 for a parameter such scan be ~ branches confine unbound particle., particles constitut-
separated into at least two groups. A group includes a nund pairs characterized by an unbound steig+u;;>0)
merical pair satisfyin@(zl)/B(ll)<l for a specific value ok. within regions surrounded by them. This vniw is realized
The other does not include such a numerical pair: numericdfirough using Eqs3.63 and (3.7a. Valules ofP; evaluated
pairs OfB(ll) and B(zl) assessed for all the valueslofio not  bY Eq._(3.7a) can satlsfy_ the.relatlorf@ P1<<1 under various
include special pairs Satisfying(zl)/B(ll)<1_ These facts conditions. If this relation is considered, E(.79 can be

mean that the former can describe the phase separation oftPProximated as

=2 particles although the latter cannot. Therefore, numerical AR 1 . e3zo (g ! )

pairs belonging to the former group can be valid. 6:(—) 1~ = e?2Ply <_) [2(1—e %)
z\o 2 2z0\ 0

B. Evaluations of correlation functions +Eae’z”’2(2—e’z")](Pi)2. (3.13
1. The pair connectedness evaluated from Eg. (3.6a)

The pair connectednes; (r) is proportional to the prob- If the relation 0<Pj<1 is considered with Eq42.7¢ and
ability that ani particle and g particle belong to the same (2.7f), the substitution of Eq(3.13 to Eq.(3.63 leads to
physical cluster. Hence, the pair connectedriggsr) given 8 2\ 32
by Eq.(3.63 is proportional to the probability that drpar- Py(0)~ _(_) e*3ZleC*1[1+W(fC)¢1],
ticle is bound near @ particle. 3Jml o

The pair connectednes$¥; (o) at the percolation thresh- (3.14a
old can be assessed from E¢3.69, (3.73, and(3.9) which
are formulas obtained by exactly solving the integral equawhere
tion system constructed from E¢R.1) and the closure rep- 48
resented by Eq(2.79. The pair connectedned;(o) as- W(fC)E_(
sessed from Eqg¥3.63a, (3.7a, and (3.9) can depend on a 3\/;
parameteif. that expresses the characteristics of the closure
represented by Eq2.79 with Egs.(2.7¢ and(2.7f). When
the closure represented by EE.70 is specified forf,=1,
the closure somewhat overestimates the long-ranged contri- 1
bution of C;f(r) given by Eq.(2.6). When the closure is -1 _
specified fo#fc=e1’2, it somewhat overestimates the decay 2T expl (3/2)20]] ' (3.4
of Cﬁ(r) dependent om. Fortunately, values oP;;(o) as-
sessed from Eqs(3.6a, (3.7a, and (3.9 for f,=1 can In EQ.(3.143, the productW(f.) ¢, can satisfy the relation
hardly differ from those foff .=e'?, unlesszo is too small.  0<W(f;)¢1<1 under various conditions. Thus, the pair
This is demonstrated by diagrams of Fig. 1 drawn from val-connectednes®;;(c) hardly varies as¢, increases, al-
ues of P;;(o) assessed at the percolation threshold of eackhough the mean physical cluster size diverges to infinity at
fluid mixture. Therefore, the pair connectedn@g o) de- the percolation threshold. Hence, each physical cluster
rived from the use of the closure represented by @qf9  should grow toward that having a larger span és in-
can well approximate that derived from the use of the closurgreases. Such growth of physical clusters means that an in-
given by Eq.(2.6), unlesszo is too small. crease ing, enhances the number of unbound particles con-

In addition, if the magnitudes ap,,kd*/ o, andzo sat-  fined by branches of the physical clusters. In addition, every
isfy either Egs.(3.7a or (3.9), then, the magnitudes are ex- diagram expressing;;(o) in Figs. 21a-2(4b) demon-
pressed asd;),,(kd’/a),, and @o),. Thus, they repre- strates thaP;;(o) hardly varies asp, increases.
sent the values ofp;, kd’/o, and zo at the percolation The parametef found in Eq.(3.143 specifies the char-
threshold. Similarly, quantities and coefficients given at theacteristics of the closure given as EQ.79. The closure
percolation threshold are expressed as those having the suffipecified forf =1 somewhat overestimates the long-ranged
p. contribution ofCﬁ(r) given by Eq.(2.6), and the closure

o _ _ specified forf.=e? somewhat overestimates the decay of
2. A contribution of physical clusters to phase behavior ij’(r) dependent om. Nevertheless, Eq3.143 shows that

A physical cluster composed of particles bound to eacha change in magnitude &¥,,(co) can approximately corre-
other satisfying the conditiok;; +u;;<0 should be a dense spond to only a variation resulting frorhgl owing to the
region ofi=1 particles. Moreover, it is possible for each relation 0<W(f.) #1<1. This means that the pair connect-

o

kdz) 32¢ 12 exd — (9/4)zo]
(3/2)zo+Inf,

1 f_ Y% exp[—(3/4)zo]
2 (3/2)zo+Inf,

X11-—
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ednessPjj(o) derived from the use of the closure repre-i=1 particles from the fluid mixture can occur owing to the
sented by Eq(2.70 leads to the same behavior as that de-increase ing,.
rived from the use of the closure given by E(.6). In a fluid mixture,i=2 particles can always receive a
Therefore, it should be inferred that the growth of physicalpassively attractive force generated from the cooperation be-
clusters due to an increase iy, enhances the number of tween the exclusion of=2 particles due to the hard core
unbound particles confined by branches of the physical clugPotential <o) and an attractive force betweer 1 par-
ters, even if the closure given by E.6) is used. ticles. Such passively'attracti.vg force $hould contribute to
Unboundi=1 particles within regions surrounded by Stuffing manyi =2 particles within a region surrounded by
branches of physical clusters should become denser thafanches of physical clusters. Howevier,2 particles in the
those outside of the regions, if their branches prohibit thd€9ion should have a tendency to get larger values of the sum
boundaries of the regions from expanding freely. This mean&ii T Y when comparing with :1. particles, since the-re IS
that densities of unbouric=1 particles in the regions should no attractive force amonig=2 particles. Hence, it is difficult

be enhanced, and as a result, their densities outside of tﬁgr a large number of =2 particles to be retained in the

regions should be reduced. If a contribution of the latter to g_gion. Then, the stability of physical clusters disturbed for

decrease igq4(o) is more dominant than that of the former an increase inp, must be regained by redistributirig-2

. . th I hould d particles into a large number of regions surrounded by
to an increase igy(o), the value 0yy(o) should decrease i anches of physical clusters. Such behavior can lead to a

as ¢, incre:ases. Such behavior can b_e _realized from diagecrease irg,,(’), and can be realized from a comparison
grams of Figs. @la)—2(4b). Therefore, it is inferred that the patween diagrams of Figs(23 and 22b) since the values
branches of the physical clusters should prohibit the boundyy J.0(0) at ¢;=0.4 are given agy,,(c)=5.94 for ¢,

aries of the regions from expanding freely. =0.025 andg,,(o)=5.43 for ¢,=0.05.
In addition, values of ¢,), assessed from Eq&3.79 G}Zd A passively attractive force generated from the coopera-
(3.9 for fc=1 can differ from those assessed for=€"“.  tion between the exclusion éf=2 particles due to the hard

Fortunately, these differences can become smalkoifis  core potential and an attractive force betweerl particles
large. If Egs.(2.7¢ and (2.7f) are considered with the rela- should depend on the diameter of the hard core of-a@
tions 0< Pkl and 1<zo, the substitution of Eq(3.9) to  particle and the effective range of the attractive force. Hence,
Eq. (3.13 leads to it is expected that particles contributing principally to the
magnitude ofD;;(r) can contribute to phase behavior of a
3\/; kd?\ 32 fluid mixture through their particle sizes. If such particles are
(¢>1)p%?<?> zo exd (3/2)zo] small, they can be relatively stably confined within regions
surrounded by branches of physical clusters. If the particles
have larger sizes than those of the regions, it is expected that
. (3.15 the addition of the particles into the fluid mixture can in-
crease the unstabilization of a macroscopically homogeneous
This equation demonstrates that the difference between vaPhase. L _ _
ues of (by), evaluated forf ;=1 and forf .= e'2 decreases, If spemﬂp particles interacting through only their hard
aszo increases. This behavior can also be realized from th§°T€ Potentials are much larger than regions surrounded by
comparison between diagrams of Figgld and 22b). ranches of physical clusters, it is difficult for these particles

Therefore. ifzo is large. values of derived from the to be stably retained in the regions. Despite this fact, it is
 [1zo ge, vaiu $1)p IV ~ expected that the particles can form a macroscopically ho-
use of the closure given by E¢R.6) can be well approxi-

) mogeneous phase owing to their diffusion into areas among
mated by values of¢,), derived from the use of the closure e "physical clusters, if the average extent of the physical
given by Eq.(2.79. . , clusters is smaller than the sizes of the particles. Colloidal
The formation of physical clusters cannot directly beparticles have mesoscopic sizes. Although the colloidal par-
helped byi =2 particles. There is no attractive force betweenticles are hard core spheres in the absence of attractive
two of thei=2 particles, and they also behave as hard coreforces, it is expected that they can be distributed into a mo-
in the absence of an attractive force betweem-=at particle  |ecular fluid mixture. Then, the average extent of physical
and ani =2 particle. Hencei=2 particles should distribute clusters formed in the molecular fluid mixture must be
with unboundi=1 particles among branches of physical smaller than the sizes of the colloidal particles. If the physi-
clusters. The =2 particles can, then, be confined with the cal clusters develop near a specific temperature, then, pas-
unboundi=1 particles within regions surrounded by their sively attractive forces generated between two of the colloi-
branches and their distribution should contribute to the magelal particles should be strengthened. Such attractive forces
nitude of Dj;(r). may contribute to Casimir forces that can act between col-
An increase in¢, should enhance local densities iof loidal particles immersed within a binary fluid mixture near
=1 particles in microscopically local areas surrounded bythe consolute poinis].
branches of physical clusters. This effect can increase the If branches of physical clusters have sufficiently high sta-
value of D4(0), so that this increase can result in an in- bility and make the physical clusters large, it is expected that
crease ingq;(o). Such behavior can be realized from com-i=2 particles being the same size ias1 particles can be
parisons between diagrams of Fig$l@ and 21b) and be- stably retained in regions surrounded by the branches. Then,
tween those of Figs.(2a) and 22b). In addition, diagrams the phase separation of2 particles from a mixture fluid
of Fig. 2(1b) demonstrate that even the phase separation adhould be prevented.

2 1
X 1—§(2+\/§—Infc)5+
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10 lized, if ¢1,kd?/ o, and o) " have large values. Such phe-

: nomenon is suggested by diagrams of Fig8aRand Z3b).

If the effective range of an attractive force between two of
i =1 particles is decreased, the stability of branches of physi-
cal clusters is reduced. Kd?/ o is large, then, it is possible
to raise the probability that the=1 particles which have
approached each other satisfy a bound site-u;<0. A
percolation state of a fluid mixture due to the 1 particles
can be generated, although the effective range of an attrac-
tive force between two of the=1 particles is considerably
narrow in comparison with their hard core diameter.

In addition, the attractive force acting between two of the
i=1 particles is sharply strengthened near the surface of
eachi=1 particle. This means that the movement of the

0.1

(P (o))

0.01 =1 particles which have approached each other should be
rapidly strongly restricted by the attractive force. This effect
0.001 due to the attractive force can be derived from a slight in-
¢ or 0z 03 04 05 06 07 crease ing,. The characteristic of the attractive force can
10 (é1), make the fluid mixture undergo a change from a macroscopi-
L (zcr‘)p.:, 2. oy cally inhomogeneous phase to a macroscopically homoge-
& oy | e, ’ neous phase and the phase separatian=df particles after
S i the change, a&; increases slightly. Thus, a macroscopically
= 0.01 homogeneous phase of the fluid mixture can be sensitively
= 0001 influenced by a small change iy. Moreover, the attractive
0.0001 force can make the percolation threshold approach to a par-

0.00001 U ticular point at which the phase separationi efl particles
from the fluid mixture takes place. When the densityi of
=1 particles is low, the contribution of the attractive force

1000 . . . :
100 towards making am=1 particle approach anothes 1 par-

N 10 ticle is more important than that when their density is high.
= 1 Therefore, those characteristic effects due to the attractive
= g force should be revealed from phase behavior occurring at a
= ool low density ofi =1 particles, as is demonstrated by diagrams

0.001 of Figs. 24a) and 24b).
0.0001
0 1 2 3 3. A macroscopically homogeneous phase ef2 particles

(:cr)p induced at the percolation threshold

FIG. 1. The pair connectedneB;,(0)], for the two compo- (1) (1) _
nent mixture fluids characterized by Eq8.1)—(3.29. To assess Values of BY” and B;" assessed from Eq43.123

[P1y(0)],, Eq.(3.6a is used with Eqs(3.7a and(3.9). The values (3.129 for a Speciﬁc attractive force car?.satiﬁél)(B(ll)

of [P15()], should be considered as those assesseg foraving <1 at the percolation threshold. A specific attractive force
an arbitrary value different from zero. Herg; is the volume frac-  resulting inB$Y/B{"<1 at the percolation threshold can be
tions ofi =2 particles. Solid lines represeit=1; open circles and given by coefficients having values found from Fig1)3
solid circlesf.=e'2 In addition, #,, zo, P1y(0), andkd’/o are  \When a fluid composed of=1 particles interacting with the

dimensionless. specific attractive force reaches the percolation threshold,
Even at a high temperature, the stabilized branches Ca_lp{anches of physical c!usters can retain a specific amount of
stably confine unbound particles ibf 1 particles withi=2 =2 particles in the fluid. It is expected that such a phenom-

particles within regions surrounded by the branches. Physic&non can contribute to hydrodynamical transport phenomena
clusters with the stabilized branches can grow toward macsuch as the viscosity anomaly found from a fluid mixturein-
roscopic sizes. Thus, it is expected that a fluid includingcluding particles similar ta=2 particles. In addition, dia-
physical clusters of a percolation state should preserve itgrams of Fig. 8) express the magnitudes of correlation
liquid phase even at a high temperature. functions for each fluid in which a specific amoung,(
The stability of branches of physical clusters should in-=0.05) of i=2 particles can be macroscopically homoge-
crease, as the volume fractiogp{) of i=1 particles, the neously mixed just at the percolation threshold.
strength of the attractive fordgroportional tokd?/ o), and Although the number of =1 particles bound to each
its effective rangdproportional to go) ~'] increase. There- other satisfying the conditio;; + u;;<0 should decrease as
fore, a macroscopically homogeneous phase can be stabp is reduced, it is possible to maintain a percolation state, if
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FIG. 2. Correlation function®4(), g11(o), g912(a), andg,(o) for the two component mixture fluids characterized by E§sl)—
(3.29. The values of;;(o) are those assessed fir=1 (except for two thin linesand ¢, having an arbitrary value different from zero.
The values oP,(0) andg;j(o) are those assessed through using E8$3 and(3.10 with Egs.(3.73, (3.9), and(3.129—(3.129. Open
triangles represent the magnitudes of correlation functions at the percolation threshold; open circles represent limits of solutions provided by
Eq. (3.73; open squares represent limits of solutions provided by E3$29 and(3.12h; solid squares represent points derived from the
conditionBSY/B{M<1. In addition, ¢, ¢,, zo, P1y(o), andkd?/o are dimensionless.
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the ratio of their number to the total numberief1 particles (1) Coefficients
enhances ag; is reduced. An increase in the ratio should
lead to an increase iP14(o)],. Then, the percolation state

5
N
is maintained at a small value @f;, while [gy5(a)], in- 8 ; /\”_”
1
0

creases owing to the increase([iR,4(o)],. However, the
increase in the ratio can result in decreases in local densities
of unboundi =1 particles, so that=2 particles can distrib-
ute away from each other. Thusgq,(o)], and[g.x(0)], 200
can decrease. These phenomena can be realized from die
grams of Fig. 8). Such phenomena suggest that physical
clusters confiné=2 particles and unbounid=1 particles.
Ultimately, the formation of physical clusters can be con-

sidered as a primary phenomenon resulting in density fluc- 0
tuations in a multicomponent fluid mixture, and should con- 0 01 02 03 04 05 06 07
tribute to complicating a phase diagram for the fluid mixture. (1)p

(2) Correlation Functions
IV. CONCLUSIONS 100

(g22)p

Constituents of a multicomponent fluid mixture can be 10 } (911),,
classified into two group&roup.A and groupB). Particles
belonging to the groupl (particles of4) have a tendency to
satisfy the conditiorE;; +u;;=<0. Particles belonging to the
other groups (particles of3) have a tendency to satisfy the
condition E;;+u;>0. Thus,i=1 particles correspond to 0.01
particles of. A, andi=2 particles correspond to particles of 0.001
B. Amajor _cor_1tr|b_ut|on to the_ magnitude B¥; (_r) can _result 0 01 02 03 04 05 06 07

from the distribution of particles ofd. The distribution of (¢1),

particles of 3 should principally contribute to the magnitude

of D” (r) .

Each physical cluster composed of particles bound to each FIG. 3.  Correlation ~ functions [Pyy(0)],, [911(0) ],
other satisfying the conditioR;; + u;;<0 should be a dense [g,5(c)],, and[gz(c)], assessed under the conditi&él’/B{l)
region of particles of4 in the fluid mixture. Branches con- <1 for the two component mixture fluids characterized by Egs.
structing such physical clusters can confine unbound par3.1)—(3.29. The values off Py;(0)], are those assessed fby
ticles (i.e., particles constituting pairs characterized by an=1 and¢, having an arbitrary value different from zero. The val-
unbound stateE;; +u;;>0) within regions surrounded by ues ofl911(a)]p, [91(0)]p, @nd[gz(o)], are those assessed for
them. Each physical cluster can grow toward that having @2=0.05. The values of P1y(o)], and[gjj(o)], are those as-
larger span as densities of particles df increase, since Sessed through using Ed8.6a and(3.10 with Egs. (3.7, (3.9),

P,;(o) hardly varies for increases in their densities. This2"d (3.128—(3.120. Diagrams of(1) represent values of coeffi-

growth of physical clusters can enhance the number of ur](_:lents specifying particular forces that induce percolation states re-
: i e (1)/p(1) < "

bound particles confined by branches of the physical cluster%t”CtEd by the conditiorB;"/BY”<1. In addition, ¢, ¢,, o,

5 . .
Local densities of particles within regions surrounded by 1(0), andkd”/o are dimensioniess.

branches of the physical clusters should be lower than localj,gy1d enhance local densities of particles.fin micro-
particle densities of the physical clusters, since unbound pakcopic areas of the regions. Since the hard core potentials of
ticles are confined within the regionS. Then, their brancheﬁarticles OfA and B contribute to this phenomenon’ such
must prohibit the boundaries of the regions from expandingjze effects due to particles can drive into the phase separa-
freely. The confinement of unbound particles means that thgon resulting from the addition of particles &
physical clusters can contribute to prohibiting a transition The formation of physical clusters of particles.4fcan be
from a macroscopically homogeneous phase of a multicomeonsidered as a primary phenomenon resulting in density
ponent fluid mixture to its macroscopically inhomogeneousfluctuations. Then, the confinement of particlestofind A
phase. within regions surrounded by the branches of the physical
If particles of A are added into a fluid, it is possible that clusters can be regarded as a secondary phenomenon. Ulti-
addition of the particles increases the stabilization of physimately, such phenomena can complicate phase behavior of a
cal clusters. The phase separation of particlegsdfom a  fluid mixture.
mixture fluid should, then, be prevented, since stabilized
branches of physical clusters can retain the particle8 iof
regions surrounded by the branches. For the potential given as E¢2.5), the Ornstein-Zernike
Since particles of3 should distribute with unbound par- equation can be analytically solvéd5,16. By modifying
ticles of 4 within regions surrounded by branches of physi-the solutiong 15,16 given for the potential, the correlation
cal clusters, an increase in the number of particlesBof functiong;;(r) can be given as

0.1 |

Magnitude

(Pi1)p

APPENDIX: THE PAIR CORRELATION FUNCTION
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whereA=1—3F ¢y, V1(2,0))=(2,07) [ 1—2,01/2— (1+ z,0¢/2)e" %], and ®o(z,07)=(z07)  (1—e *“1). More-
over, a coefficient expressed BS” in Eq. (A1) is defined by Eq(3.113.
Then, values oBi(“) should satisfy an equation given as

k§Y d™ df £ zyo; Ao (d(™ a{ 2,01
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where the coefficient [} in Eq. (A2a) are definded as
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For N=2, the factorzn(r]-e‘zn"i/zaj(“)/cr]— in Eqg. (A2a) in Eq. (A2a) can be given as
(n) 1 2
z,07e —zpojl2 ) - ZV 2 (— l)n+mY3 m,3— npym. (A3a)
i =

where
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For a two-component fluid mixture specified by E¢3.1)—(3.20, Eq. (A3a) can be simplified as
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