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Contribution of physical clusters to phase behavior

Tetsuo Kaneko*
Kurakenchikuzokeisha Company, Ltd., Shimo 1-27-22, Kita-ku, Tokyo 115-0042, Japan

~Received 20 January 2002; revised manuscript received 28 June 2002; published 18 November 2002!

In a multicomponent fluid mixture, each physical cluster generated as an ensemble consisting of particles
joined by each particle pair characterized by a bound stateEi j 1ui j <0 can contribute towards prohibiting a
transition from its macroscopically homogeneous phase to its macroscopically inhomogeneous phase. Here,Ei j

andui j represent the relative kinetic energy and the pair potential for the pair ofi and j particles, respectively.
Branches constructing such physical clusters can confine unbound particles~i.e., particles constituting pairs
characterized by an unbound stateEi j 1ui j .0) within regions surrounded by the branches, and can prohibit
the boundaries of the regions from expanding freely. Particles belonging to one of the two groups character-
izing constituents of a multicomponent fluid mixture~particles ofA) should have a tendency to satisfy the
conditionEi j 1ui j <0; particles belonging to the other group~particles ofB) should have a tendency to satisfy
the conditionEi j 1ui j .0. The pair connectednessPi j (s) proportional to the probability that a particle ofA is
bound near another particle ofA hardly varies as densities of particles ofA increase, although the mean
physical cluster size diverges to infinity as the densities approach values specified at the percolation threshold.
Thus, each physical cluster should grow toward that having a larger span as densities of particles ofA increase.
According to this growth of physical clusters, the number of unbound particles confined by branches of the
physical clusters is enhanced. The formation of physical clusters of particles ofA can be considered as a
primary phenomenon resulting in density fluctuations. Their formation results in the confinement of particles of
B andA within regions surrounded by the branches of the physical clusters.
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I. INTRODUCTION

The statistics of cluster size diversity can contribute to
statistical description of a complex system. Such an as
was demonstrated as the results of Monte Carlo simulat
@1#. It is possible even for complicated phase behavior o
multicomponent fluid mixture@2# to be attributed to a con
tribution of physical clusters. The present interest is focu
on examining a contribution of physical clusters to pha
behavior of a multicomponent fluid mixture.

The transition of a fluid from its gas phase to its liqu
phase can be driven by attractive forces among particles
stituting the fluid. The attractive forces contribute to gen
ating each physical cluster as an ensemble composed of
ticles bound to each other by it.

A bound state betweeni and j particles can, then, be de
fined by the conditionEi j 1ui j <0 @3#, if the relative kinetic
energyEi j and the pair potentialui j for the pair of thei and
j particles are used. Thus, every physical cluster mentio
in the present work is an ensemble of particles linked to e
other by bonds defined as the conditionEi j 1ui j <0.

In the present work, it is assumed that the potentialbui j is
given as the sum ofN terms composed ofk0

(n)di
(n)dj

(n)exp
(2znr)/r (n51,2, . . . ,N ) having the same feature as th
Yukawa potential, since an estimate of phase behavior f
multicomponent fluid mixture can proceed analytically. He
the coefficientb is defined asb[1/kBT with kB the Boltz-
mann’s constant andT the temperature. The produc
k0

(n)di
(n)dj

(n) of coefficients is proportional to both the facto
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1/kBT and the strength of the attractive force. Hence,
increase ink0

(n)di
(n)dj

(n) should stabilize branches of physic
clusters. Similarly, an increase in 1/zn corresponding to the
effective range of the attractive force can stabilize them.

If physical clusters are formed with developed branch
which densely surround particles constituting pairs charac
ized by an unbound stateEi j 1ui j .0, then, the physica
clusters should restrict the particles to diffuse freely. It
moreover, expected that the physical clusters can tend to
hibit the boundaries surrounding the particles from expa
ing freely.

If branches that are components of physical clusters h
high stability in a fluid, particles constituting pairs specifie
by an unbound stateEi j 1ui j .0 can be confined within re
gions surrounded by the branches even at a high tempera
The physical clusters should be developed toward extrem
large sizes as found in a percolation state related to
physical clusters, and can contribute towards preserving
liquid phase of the fluid at a high temperature.

In addition, particles within regions surrounded b
branches of physical clusters are unbound particles~i.e., par-
ticles constituting pairs characterized by an unbound s
Ei j 1ui j .0). Local densities of particles within the region
should, thus, be lower than the local particle densities of
physical clusters.

In a multicomponent fluid mixture, particles interactin
with strongly attractive forces can effectively contribute
the formation of physical clusters. Such particles can cont
ute to phase behavior of the fluid mixture through promot
the growth of physical clusters.

Particles interacting with relatively weakly attractiv
forces in the fluid mixture can hardly effectively contribu
to the formation of physical clusters. Almost all the particl
©2002 The American Physical Society02-1
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should be categorized as unbound particles.
Therefore, constituents of the fluid mixture can be se

rated into at least two groupsA and B. The groupA is
categorized as constituents that specify particles interac
with strongly attractive forces between each other~i.e., the
particles having a tendency to satisfy the conditionEi j 1ui j
<0). The other groupB is categorized as constituents th
specify particles interacting with weakly attractive forces
ther between each other or between a particle belongingA
and a particle belonging toB ~i.e., the particles having a
tendency to satisfy the conditionEi j 1ui j .0).

Although particles belonging toB can hardly effectively
contribute to the formation of physical clusters, the partic
should receive passively attractive forces generated from
cooperation between the exclusion of the particles due to
hard core potential and each attractive force between
ticles belonging toA. The passively attractive forces shou
contribute to driving the phase separation of particles
longing to B, although the features of the forces cannot
simple owing to a contribution of physical clusters.

The phase separation of particles belonging toA should
be driven by the strongly attractive interaction forces amo
particles belonging toA. The formation of physical cluster
should be directly influenced by an increase in particles
longing toA.

If particles added into a fluid interact with a sufficient
strongly attractive force between one of them and a part
composed of the fluid, the addition of the particles sho
increase the stabilization of the physical clusters in the flu
If an interaction similar to the interaction caused by t
added particles is done by atoms of bismuth added int
mercury fluid maintained at low density at a temperat
near the critical point, bismuth atoms migrating into physi
clusters of mercury atoms should increase the stabilizatio
the physical clusters. The stabilization of the physical cl
ters due to the addition of bismuth atoms should enhance
electrical conductivity of the mercury fluid, since the phy
cal clusters can play a role as paths helping electron
migrate. Furthermore, their stabilization should reduce
pressure of the mercury fluid, since branches of the stabil
physical clusters can confine unbound mercury atoms. S
phenomena due to the addition of bismuth atoms were
perimentally demonstrated@4#.

However, the stability of physical clusters in a fluid mi
ture should be reduced, if the temperature of the fluid m
ture rises. It can, then, become difficult for branches of
physical clusters to stably confine particles belonging to
groupB, within regions surrounded by their branches. T
phenomenon can disturb a macroscopically homogene
phase of the fluid mixture.

Physical clusters not only contribute towards prohibiting
transition from a liquid phase of a fluid to its gas phase,
also towards prohibiting a transition from a macroscopica
homogeneous phase of a multicomponent fluid mixture to
macroscopically inhomogeneous phase. Thus, a multicom
nent fluid mixture can be considered as a good medium
examining a contribution of physical clusters to phase beh
ior. It is, moreover, expected that a distribution structure t
is constructed from physical clusters and unbound parti
05150
-

g

-

s
he
e
r-

-
e

g

-

le
d
.

a
e
l
of
-
he

to
e
d

ch
x-

-
e
e

us

t
y
ts
o-
r

v-
t
s

surrounded by branches of the physical clusters can pla
role microscopically to interpret phenomena found for a s
cific fluid mixture.

For a binary fluid mixture, the viscosity anomaly@5# can
be induced near the consolute point corresponding to
critical transition point for demixing the two constituen
macroscopically. It is considered for the distribution structu
having physical clusters to contribute to the viscos
anomaly.

Particles belonging to the groupB can be stably confined
within regions surrounded by branches of physical cluste
if their particle sizes are small. If the particles have siz
larger than those of the regions, it is expected that the st
confinement of those particles becomes more difficult th
that of the smaller particles.

Such size effect can contribute to phase behavior o
binary fluid mixture@6#. Similarly, the size effect can con
tribute to phase behavior of a binary fluid mixture of 2,
lutidine and water near the consolute point also, since
size of a 2,6-lutidine molecule is much larger than that o
water molecule.

Nevertheless, 2,6-lutidine molecules should be conside
as molecules belonging to the groupA with water molecules.
The attractive force between two 2,6-lutidine molecules,
well as that between a 2,6-lutidine molecule and a wa
molecule cannot be ignored, although these attractive fo
are weaker than the attractive force between two water m
ecules. Thus, two kinds of physical clusters can be gener
in a binary fluid mixture of 2,6-lutidine and water; those a
water molecule clusters that are principally composed of w
ter molecules, and the others are 2,6-lutidine molecule c
ters that are principally composed of 2,6-lutidine molecul
A partial amount of 2,6-lutidine molecules can have a te
dency to enter regions surrounded by branches of water m
ecule clusters. However, the size effect mentioned ab
should induce the phase separation of 2,6-lutidine molecu
when 2,6-lutidine molecules in the binary fluid mixture e
ceed a specific amount. Another partial amount of 2
lutidine molecules should participate in the formation of
water molecule cluster with water molecules. These 2
lutidine molecules can contribute towards cutting branc
of the water molecule cluster, since the attractive force
tween two 2,6-lutidine molecules should be weaker than t
between a water molecule and a 2,6-lutidine molecule. Th
2,6-lutidine molecules participating in the formation of wat
molecule clusters should contribute to expand sizes of
regions surrounded by branches of the water molecule c
ters in cooperation with a temperature effect. If regions s
rounded by branches of the water molecule clusters exp
2,6-lutidine molecules can readily confine within the regio
Even 2,6-lutidine molecule clusters should, then, be fou
within the regions, if the regions are sufficiently large. Fu
thermore, the contribution of 2,6-lutidine molecules towar
cutting branches of the water molecule cluster can decre
the average extent of water molecule clusters, and as a re
declining water molecule clusters should allow 2,6-lutidi
molecule clusters to exist among them. It is, thus, expec
that a macroscopically homogeneous mixture of 2,6-lutid
and water should be generated, although the microscopic
tribution of water molecules and 2,6-lutidine molecules
2-2
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nonuniform. In addition, the microscopically nonunifor
distribution of 2,6-lutidine molecules occurring in bina
fluid mixtures of 2,6-lutidine and water near the consolu
point can be realized through the aggregation phenomen
colloidal particles@7#.

Density fluctuations in a specific constituent in a mu
component fluid mixture can induce density fluctuations
other constituents, as predicted from the aggregation of
colloidal particles. This phenomenon can be a factor com
cating a phase diagram for a multicomponent fluid mixtu
Monte Carlo simulation revealed such complicated ph
diagrams even for a binary fluid mixture composed of p
ticles interacting with the attractive force due to a squa
well potential@2#.

Even if colloidal particles having mesoscopic sizes
regarded as hard core spheres in the absence of attra
forces, it is possible for passively attractive forces to be g
erated among the colloidal particles immersed in a molec
fluid mixture. At a temperature near the consolute point
the fluid mixture, a distribution structure that is construct
from physical clusters and unbound molecules surrounde
branches of the physical clusters can vary considerably. If
average extent of the physical clusters increases beyond
comparable with the diameter of a colloidal particle, the p
sively attractive forces among the colloidal particles sho
be strengthened, since the surface of a colloidal particle c
not contribute to making a physical cluster grow. Thus, it
expected that such attractive forces can contribute to Cas
forces, which can act among colloidal particles~or between
parallel plates! immersed within a binary fluid mixture nea
the consolute point~or a one-component fluid near th
liquid-vapor critical transition point! @8#.

When physical clusters are formed in a fluid, partic
constituting the fluid can be classified into two groups. O
group is categorized as an ensemble of pair particles
belong to the same physical cluster. The other group is
egorized as an ensemble of pair particles that do not be
to the same physical cluster. This categorization divides
pair correlation functiongi j (r ) into a correlation function
Pi j (r ) and the other correlation functionDi j (r ) @9#.

According to the above categorization, particles belo
ing to the groupA should significantly contribute to th
magnitude ofPi j (r ), since these particles can actively co
tribute to the formation of physical clusters. Particles belo
ing to the groupB should relatively contribute to the magn
tude ofDi j (r ), since these particles should have a tende
to distribute within regions surrounded by branches of phy
cal clusters. Thus, a distribution structure of particles can
characterized byPi j (r ) andDi j (r ) that are able to describe
multicomponent fluid mixture.

The correlation functionPi j (r ) called the pair connected
ness should rapidly decay asr increases beyond the avera
extent of physical clusters. The decay ofDi j (r ) for r should
not depend on the average extent of physical clusters, ifr is
sufficiently large. Thus, the asymptotic behavior ofDi j (r )
for r @1 should be expressed asDi j (r )'gi j (r ), sincegi j (r )
is given by the sumPi j (r )1Di j (r ). The asymptotic behav
ior of Pi j (r ) for r @1 can be approximately expressed
Pi j (r );@2bui j (r )#3/2 @10#. This asymptotic behavior sug
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gests that if a physical cluster has a fractal structure, its st
ture can rely on a feature ofui j (r ). If the asymptotic behav-
ior of ui j (r ) for r @1 is expressed asui j (r );1/r , the
asymptotic behavior ofPi j (r ) suggests a physical cluster t
have a structure with a fractal dimension 1.5. The growth
a physical cluster of a particular constituent can result fr
the contact of small physical clusters. This growth proc
can be similar to that known as cluster-cluster aggregat
In addition, the distribution of particles resulting from
cluster-cluster aggregation leads to a fractal structure, w
the dimensiondf of the fractal structure is known asdf

;1.75 @11#.
The mean size of physical clusters can be estimated u

the pair connectednessPi j (r ) @9#. An equation for estimating
their mean size is given in Sec. II C. Thus, a criterion for t
growth of physical clusters into macroscopic size can
given as that for the growth of the mean size of the phys
clusters. Using this measure, it is possible to estimate
percolation threshold at which the physical clusters can g
without bounds according to the contact between phys
clusters. Such estimates on the percolation threshold
ceeded analytically for single-component fluids composed
particles interacting via the Yukawa potential@10,12#. More-
over, such an estimate of the percolation threshold procee
analytically for a multicomponent fluid composed of pa
ticles interacting via a potential having the same feature
the Yukawa potential@13#.

According to the use of a specific Yukawa potential,
accurate and efficient estimation of the pair correlation fu
tion gi j (r ) is possible for a binary fluid mixture over th
entire r range@14#. In the present work, the pair correlatio
function gi j (r ) at a specific point (r 5s i j ) will be estimated
for the potential bui j having terms composed o
k0

(n)di
(n)dj

(n)exp(2znr)/r (n51,2, . . . ,N ), using an analytical
solution @15,16# of the Ornstein-Zernike equation due to th
mean spherical approximation~MSA!. The pair correlation
function derived from this analytical solution is shown in th
Appendix. The pair connectednessPi j (r ) can be obtained for
that potential as summarized in Sec. II.

In order to estimate phase behavior for specific tw
component fluids,Pi j (r ) andgi j (r ) will be given in Sec. III.
Each two-component fluid discussed in Sec. III is a mixtu
in which hard core spheres (i 51 particles! interacting with
an attractive force are mixed with hard core spheres (i 52
particles! in the absence of attractive forces. In addition, t
i 51 particles correspond to particles belonging to the gro
A, and thei 52 particles correspond to particles belongi
to the groupB.

II. PAIR CONNECTEDNESS

A. A closure scheme similar to the MSA

The pair connectednessPi j (r ) is defined as the probabil
ity r ir j Pi j (r )dr idr j that both thei particle in a volume ele-
mentdr i and thej particle in a volume elementdr j belong to
the same physical cluster. In the above,r i and r j are the
densities of thei and j particles, respectively, for a uniform
2-3
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distribution. The probability that thei particle indr i and the
j particle in dr j do not belong to the same cluster is e
pressed asr ir jDi j (r )dr idr j .

The pair connectednessPi j (r ) should satisfy an integra
equation derived from classifying Mayer’s mathematic
clusters~diagrams defined in terms off bonds! which consti-
tute gi j . The Mayerf function f i j 5e2bui j 21 is represented
as the sum of two factors; one factor is expressed asf i j

1

contributing to the bound state, and the other factor is
pressed asf i j* which does not contribute to the bound sta
The factorsf i j

1 and f i j* can be given asf i j
1[pi j (r )e2bui j and

f i j* [@12pi j (r )#e2bui j 21, respectively, using the probabi
ity, pi j (r ), that a pair ofi and j particles satisfies the cond
tion Ei j 1ui j <0. The probabilitypi j (r ) should be given as

pi j ~r !52p21/2E
0

2bui j
y1/2e2ydy,

wherey is defined asy5@bEi j #
1/2 @3#. Thus, Mayer’s math-

ematical clusters constitutinggi j can be expressed as mat
ematical clusters consisting off i j

1 and f i j* . If each f i j
1 is

defined in terms of anf 1 bond, thef 1 bond corresponds to
the pair of particles satisfying the conditionEi j 1ui j (r )
<0. Particles jointed byf 1 bonds form a physical cluster. I
the physical cluster includesi and j particles, the physica
cluster includes the particles contributing to a diagram h
ing at least one path of all thef 1 bonds between the roo
pointsi andj, at which thei andj particles are located. Suc
diagrams are those that contribute toPi j , according to the
definition of Pi j . The collection of diagrams contributing t
Pi j can, then, be separated into the sum of two parts, nam
Ci j

1 and Ni j
1 . The partCi j

1 is the contribution of non-noda
diagrams having at least one path of allf 1 bonds betweeni
and j. The partNi j

1 represents the contribution of nodal di
grams having at least one path of allf 1 bonds betweeni and
j. Hence,Ni j

1 can be given by the convolution integral of th
product ofCi j

1 and Pi j . The convolution integral can resu
in an integral equation that should be satisfied byPi j . There-
fore, the pair connectednessPi j can be given as a solution o
the integral equation@9#. Such an integral equation can b
expressed forL constituents as

Pi j ~r !5Ci j
1~r !1 (

k51

L
rkE Cik

1~ ur2r ku!Pk j~r k!dr k ,

~2.1!

whereL is the number of constituents.
The meaning of the correlation functionCi j

1 can be re-
vealed from Eq.~2.1!, since Eq.~2.1! can be solved recur
sively for Pi j to give

Pi j 5Ci j
11 (

k151

L
rk1

E Cik1

1 Ck1 j
1 dr k1

1 (
k151

L

(
k251

L
rk1

rk2
E E Cik1

1 Ck1k2

1 Ck2 j
1 dr k1

dr k2
1•••.

~2.2!
05150
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SincePi j is proportional to the probability that bothi and j
particles belong to the same physical cluster, each term
the right-hand side of Eq.~2.2! has a magnitude proportiona
to that probability. This fact means that each term on
right-hand side of Eq.~2.2! is proportional to the probability
that both thei and j particles belong to the same physic
cluster via the contribution of other particular particl
(k1 ,k2 , . . . ), although the first term is proportional to th
probability without the contribution of other particular pa
ticles. Thus, the correlation functionCi j

1 is proportional to
the probability that both thei and j particles belong to the
same physical cluster without the contribution of other p
ticular particles. Therefore,Ci j

1 should be defined as a func
tion proportional to the probability that both thei and j par-
ticles are found within the simplest bonding structure.

Equation~2.1! has the same mathematical structure as
Ornstein-Zernike equation. The Ornstein-Zernike equat
can be solved analytically for some fluids, if the MSA
used. In the MSA, the direct correlation functionci j is given
as the sum of the short-ranged contribution (ci j

0 ) and the
long-ranged contribution (2bui j ). If Ci j

1 can be also given
as such a sum, the procedure for solving Eq.~2.1! can be
simplified, as can be found in the procedures concerning
MSA. Fortunately, a closure scheme similar to the MSA c
be obtained for the integral equation as the sum of a sh
ranged contribution and a long-ranged contribution@13#, and
can be given as

Ci j
1~r !5Ci j

01~r !1
4

3Ap
@2bui j ~r !#3/2 for bui j ~r !,0.

~2.3!

In the same manner as the assumption made aboutci j
0 for the

MSA, the short-ranged contributionCi j
01(r ) is assumed as

Ci j
01~r !50 for r>s i j , ~2.4!

wheres i j is given ass i j 5
1
2 (s i1s j ) for the diameters i of

the hard core of particlei and the diameters j of the hard
core of particlej. The most completely short-ranged intera
tion betweeni and j particles should be attributed to har
core potentials. The hard core potentials do not directly c
tribute to the interaction between them forr>s i j . Thus, Eq.
~2.4! should be justified as an approximate expression
found according to the MSA.

If it is assumed that the potentialbui j is given as

2bui j ~r !5 (
n51

N
k0

(n)di
(n)dj

(n) exp~2znr !

r
for r>s i j ,

~2.5!

the closure scheme given by Eq.~2.3! can be expressed as

Ci j
1~r !5Ci j

01~r !1
4

3Ap
F (

n51

N
k0

ndi
ndj

nexp~2znr !G3/2
1

r 3/2
.

~2.6!

Here, 1/zn represents a feature corresponding to the effec
range of the attractive force betweeni and j particles. The
2-4
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factor k0
(n) is proportional to the factor 1/kBT, and is also

proportional to the strength of a common effect contribut
to every attractive force acting between particles of each
ticle pair. A factordi

(n) represents a feature of ani particle,
and the strength of a common effect contributing to ev
interaction occurring between thei particle and another par
ticle. Moreover, the feature of thei particle does not influ-
ence the magnitude ofk0

(n) .
Significant terms which should contribute to th

long-ranged contribution of the closure scheme, c
ri

-

io
e

n

05150
r-

y

n

be extracted from the terms included in the fac
@(nk0

ndi
ndj

nexp(2znr)#
3/2 in Eq. ~2.6! by considering an as

sumption made as

0,z1<z2<•••<zN,`. ~2.7a!

According to this assumption, the factor which should co
tribute to the long-ranged contribution of the closure schem
should be modified as
be found

-
l

he
on

of
-

F (
n51

N
k0

ndi
ndj

nexp~2znr !G3/2

'@k0
1di

1dj
1exp~2z1r !#3/2F11

3

2

exp~z1r !

k0
1di

1dj
1 (

n52

N
k0

ndi
ndj

nexp~2znr !G . ~2.7b!

Thus, the significant terms which should be considered in the long-ranged contribution of the closure scheme, can
from Eq. ~2.7b!.

Furthermore, two approximate expressions for the factor (1/r )3/2 in Eq. ~2.6! should be derived in order to avoid math
ematical difficulty due to (1/r )3/2 in solving Eq.~2.1! analytically. The decrease inCi j

1(r ) due to each term of exponentia
function can be much more dominant than that due to the factor (1/r )3/2, asr increases. By considering this effect, one of t
approximate expressions is represented as (1/Aa)(1/r ) instead of (1/r )3/2. The other can be derived by requiring the relati
(1/r )3/25e2z8r /r for 0,r 2a!1, and is represented as (e1/2/Aa)(1/r )exp@2r/(2a)# instead of (1/r )3/2. Here, the coefficienta
is a constant.

By considering the above approximations with Eq.~2.7b!, two approximate expressions for a long-ranged contribution
the closure scheme can be found, and can derive two approximate expressions for Eq.~2.6!. These two approximate expres
sions are characterized by the parameterf c , and can be expressed as

Ci j
1~r !5Ci j

01~r !1 (
n51

N
k̆0

nd̆i
nd̆j

n exp~2 z̆nr !

r
, ~2.7c!

where

0, z̆1< z̆2< z̆3<•••, ~2.7d!

z̆n5H ~3/2!z11a21ln~ f c! ~n51, f c51, e1/2!

zn1~1/2!z11a21ln~ f c! ~n52,3, . . . ,N, f c51, e1/2!,
~2.7e!

and

k̆0
nd̆i

nd̆j
n5H 4 f c~3ApAa!21~k0

(1)!3/2~di
(1)!3/2~dj

(1)!3/2 ~n51, f c51, e1/2!

2 f c~ApAa!21~k0
(1)!1/2k0

(n)~di
(1)!1/2di

(n)~dj
(1)!1/2dj

(n) ~n52,3, . . . ,N, f c51, e1/2!.
~2.7f!
tor

tor
Here, the maximum hard sphere diameter of particles dist
uted in the fluid mixture is applied as the coefficienta. When
the closure expressed as Eq.~2.7c! is used, the integral equa
tion system given by Eqs.~2.1! and ~2.7c! can be exactly
solved as known from solving the Ornstein-Zernike equat
system@15,16# which has the Yukawa closure due to th
MSA.

In addition, the approximation given by Eq.~2.7c! for f c
51 somewhat overestimates the long-ranged contributio
Ci j

1(r ), since the approximation specified forf c51 means
b-

n

of

that the long-ranged contribution described by the fac
(1/r )3/2 in Eq. ~2.6! is approximated as (1/Aa)(1/r ). The
alternative approximation given by Eq.~2.7c! for f c5e1/2

somewhat overestimates the decay ofCi j
1(r ) dependent onr,

since the long-ranged contribution described by the fac
(1/r )3/2 in Eq. ~2.6! is approximated as (e1/2/Aa)(1/r )exp
@2r/(2a)#.

According to a previous study on Yukawa fluids@10#,
overestimation of the long-ranged contribution ofCi j

1(r ) can

lead to an overestimation of 1/(k̆0
nd̆i

nd̆j
n) at the percolation
2-5
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threshold. The diagram of the percolation threshold for ov
estimating the long-ranged contribution, however, has
same pattern as that for overestimating the decay ofCi j

1(r ).

B. A solution of the integral equation

Based on a mathematical procedure similar to that for
Orstein-Zernike equation@15,17,18#, the use of Baxter’sQ
function @17# givesPi j (r ) andCi j

1(r ) satisfying Eq.~2.1! for
the L-component fluid mixture. They are expressed as

2prPi j ~r !52
d

dr
Qi j ~r !12p(

k51

L
rk

3E
l jk

`

Qk j~ t !~r 2t !Pik~ ur 2tu!dt

for l j i <r ,`, ~2.8a!

and
s

s

e

05150
r-
e

e

2prCi j
1~r !52

d

dr
Qi j ~r !1 (

k51

L
rk

3E
sup[lk j ,lki2r ]

`

Qjk~ t !
d

dr
Qik~r 1t !dt

for l j i <r ,`, ~2.8b!

wherel j i is defined asl j i [
1
2 (s j2s i). The functionQi j (r )

in Eqs.~2.8a! and ~2.8b! is introduced as

Q̃i j ~k!5d i j 2~r ir j !
1/2E

l j i

`

eikrQi j ~r !dr, ~2.8c!

where d i j 50(iÞ j ) and d i i 51. The functionQi j (r ) may
have a specific form that includes unknown coefficie
Xj

nm/x andPj
m , and can be expressed as

Qi j ~r !5Qi j
0 ~r !1 (

n51

N
s is j

d̆i
n

s i

1

x (
m51

2

Xj
nmPj

mez̆ns j /2e2 z̆nr

~l j i ,r , N52!, ~2.8d!
Qi j
0 ~r !5 (

n51

N F2s is j

d̆i
n

s i

1

x (
m51

2

Xj
nmPj

mez̆ns j /21s is j Pi
n 1

z̆ns i

1

x (
m51

2

Xj
nmPj

mez̆ns j /2G ~e2 z̆nr2e2 z̆ns i j !

~l j i ,r ,s j i , N52!, ~2.8e!
en-
and

Qi j
0 ~r !50 ~s j i <r , N52!. ~2.8f!

In addition, an unknown coefficientPj
n is related to the pair

connectedness and is expressed as

Pj
n[12(

l 51

L
f l

d̆l
n

s l

1

~ z̆ns l !
2 F E

0

`

Pl j ~t/s!e2ttdtG
s5 z̆n

,

~2.8g!

wheref l represents the volume fraction defined as

f l[
p

6
r ls l

3 . ~2.8h!

The coefficientPj
n defined by Eq.~2.8g! must always be

positive, sinced̆ j
n/s j should be positive for arbitrary value

of j andn. According to Eq.~2.8g!, this coefficient should be
small, if the effective range characterized by 1/z̆n is short.

The correlation functionCi j
1(r ) given by Eq.~2.8b! must

satisfy Eqs.~2.4! and ~2.7c!. The pair connectednessPi j (r )
must satisfyPi j (r )50 for r ,s i j , since hard core potential
contribute to the interaction betweeni and j particles. This
relation must be also satisfied by the pair connectedn
Pi j (r ) given by Eq. ~2.8a!. Thus, the behavior ofPi j (r )
given by Eq.~2.8a! and the behavior ofCi j

1(r ) given by Eq.
~2.8b! are restricted. Unknown coefficientsXj

nm , x, andPj
m

ss

can be exactly determined according to the restrictions m
tioned above. As a result, unknown coefficientsXj

nm and x
are given as

S Xj
11 Xj

12

Xj
21 Xj

22D
[

p

6 S ez̆1s j /2~ z̆1s j !
21x22 2ez̆2s j /2~ z̆2s j !

21x12

2ez̆1s j /2~ z̆1s j !
21x21 ez̆2s j /2~ z̆2s j !

21x11 D
~2.9a!

and

x[x11x222x12x21, ~2.9b!

where

xnm[(
l 51

L
ez̆ns l /2e2 z̆ms l /2

z̆ns l~ z̆n1 z̆m!s l
F z̆ms le

2 z̆ns l
d̆l

n

s l
S d̆l

m

s l
2

1

z̆ms l

Pl
mD

1Pl
nS d̆l

m

s l
Yll

mn1Pl
mZll

mnD Gf l ~m51,2; n51,2!,

~2.9c!

Yjl
mn[

1

z̆ns l

@~ z̆n1 z̆m!s l2 z̆ms le
2 z̆ns j # ~m51,2; n51,2!,

~2.9d!
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and

Zjl
mn[

1

z̆ms j z̆ns l

@ z̆ns le
z̆ms j2~ z̆n1 z̆m!s l1 z̆ms le

2 z̆ns j #,

~m51,2; n51,2!. ~2.9e!

Other unknown coefficientsPj
n are given as

2pe2 z̆ns j /2
k̆0

n

z̆n

d̆j
n

s j
x22x(

r 51

2

Xj
nrPj

r

1
6

p (
m51

2

(
r 51

2

(
s51

2

(
l 51

L Ff lXl
nrXl

msPl
r Pl

s e2 z̆ms j /2

~ z̆n1 z̆m!s l

3S d̆ j
m

s j
Yjl

mn1Pj
mZjl

mnD G50. ~2.9f!

In addition, Eqs.~2.9a!–~2.9f! are results obtained forN
52.

The behavior of the pair connectednessPi j (r ) can be
readily estimated at the particular distancer 5s i j where the
hard spheres of ani particle and aj particle contact each
other, if it is considered for Eq.~2.8a! to be given as a con
tinuous function ofr. By considering the relationPi j (r )50
for r ,s i j , Eq.~2.8a! given as a continuous function ofr can
lead to the magnitude ofPi j (r ) given atr 5s i j as

Pi j ~s i j !5
1

2p

s j

s i j

1

x (
m51

2

(
n51

2 S z̆ns i

d̆i
n

s i
2Pi

nD
3e2 z̆ns i /2Xj

nmPj
m . ~2.10!

In addition, Eq.~2.10! is a result obtained forN52.

C. Mean size of physical clusters

The equilibrium numbernn of physical clusters consistin
of n particles can be related to the pair connectednessPi j ,
according to the formula given by Coniglio, DeAngelis, a
05150
Foriani @9#. The mean physical cluster sizeS is given byS
5((nn2nn)/((nnnn). Thus, the mean physical cluster sizeS
is the mean number of particles per physical cluster. T
mean physical cluster sizeS can be related to the pair con
nectednessPi j as

S511S (
k51

L
rkD 21

(
i 51

L

(
j 51

L
r ir jE Pi j ~r !dr . ~2.11!

The mean physical cluster sizeS given by Eq.~2.11! can
be rewritten as

S5(
i 51

L H (
j 51

L F (
k51

L
fk

f i
S s i

sk
D 3G21/2

Q̃i j
21~0!J 2

, ~2.12a!

since the relation betweenQ̃k j
21(0) andPi j is given owing to

Eq. ~2.1! as

(
k51

L
Q̃ki

21~0!Q̃k j
21~0!5d i j 1~r ir j !

1/2E Pi j ~r !dr , ~2.12b!

whereQ̃i j (0) for N52 can be given as

Q̃i j ~0!5d i j 1
1

x (
m51

2

(
n51

2 S 6

p
f is i D 1/2

Qi
nS 6

p
f j

1

s j
D 1/2

Xj
nmPj

m

~2.12c!

with

Qi
n[

e2 z̆ns i /2

z̆ns i
F2

ezns i212 z̆ns i

z̆ns i

Pi
n2

d̆i
n

s i
~ z̆ns i11!G .

~2.12d!

Therefore, the mean physical cluster size diverges to infin
if Q̃i j

21(0) reaches infinity. The percolation due to the cont
of physical clusters can be generated under a condition
isfying Q̃i j

21(0)5`.
For a two-component mixture (L52), Eq. ~2.12a! with

the use of Eqs.~2.9a!, ~2.9c!, and~2.12c! results in
S5F11
f2

f1
S s1

s2
D3G21H 11(

l51

2

z̆ns le
z̆ns lx21f lFQl

1S ez̆1s l /2

z̆1s l

~ z̆ns le
z̆ns l !21x22Pl

12
ez̆2s l /2

z̆2s l

~ z̆ns le
z̆ns l !21x12Pl

2D 1ez̆2s l /2

3Ql
2S 2

ez̆1s l /2

z̆1s l

e2 z̆2s l /2~ z̆ns le
z̆ns l !21x21Pl

11
1

z̆2s l

~ z̆ns le
z̆ns l !21x11Pl

2D G1f1f2~Q1
1ez̆2s2/2Q2

22ez̆2s1/2Q1
2Q2

1e2 z̆2l12!

3S z̆ns2ez̆ns2x21
ez̆1s1/2

z̆1s1

1

z̆2s2

~ z̆ns2ez̆ns2!21P1
1P2

22 z̆ns1ez̆s1x21
ez̆1s2/2

z̆1s2

ez̆2l12

z̆2s1

~ z̆ns1ez̆ns1!21P2
1P1

2D J 21

3H H 12
6

p

z̆ns2ez̆ns2

x (
m51

2

(
r 51

2 F S f1f2

z̆ms1

z̆ms2
D 1/2

ez̆ms1/2Q1
me2 z̆ml122f2ez̆ms2/2Q2

mGe2 z̆ms2/2~ z̆ns2ez̆ns2!21X2
mrP2

r J 2

1S s1

s2
D 2H S f2

f1

s1

s2
D 1/2

1
6

p

z̆ns1ez̆ns1

x (
m51

2

(
r 51

2 F S f1f2

z̆ms1

z̆ms2
D 1/2

ez̆ms1/2Q1
m

2f2ez̆ms2/2Q2
me2 z̆ml21Ge2 z̆ms1/2~ z̆ns1ez̆ns1!21X1

mrP1
r J 2J . ~2.13!
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If each physical cluster is formed as an ensemble of p
ticles bound to each other satisfying the conditionEi j 1ui j
<0, then, the mean physical cluster size isS given as Eq.
~2.13!. Therefore, the percolation threshold can be read
estimated for a two-component mixture system (L52) com-
posed of particles interacting with attractive forces due to
two-term potential (N52), using Eq.~2.13!.

III. SPECIFIC FLUIDS

A. Formulas for evaluating correlation functions

1. A specific fluid

All the coefficients expressed asPj
n in Eq. ~2.9f! must be

assessed to evaluate the percolation threshold for a fluid
ture composed of particles interacting through the two-te
potential (N52). Their evaluation can be simplified for
specific two-component fluid mixture. This fluid mixture
specified as

s15s25s, ~3.1!

z15z, 0,zs,z2s, z2s@1, ~3.2a!

d1
(1)

s1
5

d

s
, 0<

d2
(1)

s2
!1,

d1
(2)

s1
5

d2
(2)

s2
5

d

s
, 0<

d

s
,

~3.2b!

k0
(1)5k, and 0<k0

(2)!1. ~3.2c!

Then, Eqs.~2.7e! and ~2.7f! for n51 result in

z̆1s5
3

2
z1s1 ln~ f c!, ~3.3a!

z̆1

z1

k̆0
1

z̆1

d̆i
1

s

d̆ j
1

s
5

4

3Ap
f cAz1sS k0

(1)

z1
D 3/2S di

(1)

s

dj
(1)

s D 3/2

.

~3.3b!

Thus, Eq.~3.3b! leads to the simplest assumption made a

d̆i
1

s
5S di

(1)

s D 3/2

. ~3.3c!

Therefore, the parameters for estimating the pair connec
ness, according to Eqs.~2.7e!–~2.7f!, Eqs.~3.1!–~3.2c!, and
Eq. ~3.3c!, can be expressed as

z̆1[ z̆, 0, z̆s, z̆2s, z̆2s@1, ~3.4a!

d̆1
1

s1
5

d̆

s
, 0<

d̆2
1

s2
!1,

d̆1
2

s1
5

d̆2
2

s2
5

d̆

s
, 0<

d̆

s
,

~3.4b!

k̆0
15 k̆, and 0< k̆0

2!1. ~3.4c!

In addition, it can become somewhat easy to assess
pair connectednessPi j (s) and the pair correlation function
gi j (s), if a specific condition given asd̆/s51 is considered.
05150
r-

y

e

ix-

d-

he

For this condition, the relationd/s51 is satisfied owing to
Eq. ~3.3c!. Moreover, Eqs.~3.3a! and ~3.3b! result in

k̆

z̆
5

8

9Ap
f cFzs1

2

3
ln~ f c!G21S kd2

s D 3/2

~ f c51, e1/2!.

~3.5!

A specific fluid mixture described by Eqs.~3.1!–~3.2c! is
a two-component fluid mixture composed of a constitu
( i 51 particles! and the other constituent (i 52 particles!. i
51 particles interact between each other through the h
core potential (r ,s) and an attractive force (zr.zs) and
i 52 particles only through the hard core potential (r ,s).
The fluid mixture is that in which hard core spheres intera
ing with the attractive force are mixed with hard core sphe
in the absence of attractive forces.

2. The pair connectedness Pij „s…

According to Eq.~2.10!, the pair connectednessPi j (s)
for i andj particles distributed in the fluid mixture characte
ized by Eqs.~3.4a!–~3.4c! can be found as

P11~s!5
z̆s

6
e2 z̆s S d̆

s
2

1

z̆s
P1

1D P1
1

f1
F1

2
S d̆

s
D 2

e2 z̆s1
1

z̆s

d̆

s

3~12e2 z̆s!P1
11

1

2
~ez̆s221e2 z̆s!~P1

1!2G21

,

~3.6a!

P12~s!50, P21~s!50, and P22~s!50. ~3.6b!

Equation~3.6a! can be derived forf2Þ0. It does not, how-
ever, includef2. Therefore,P11(s) is independent off2.
This effect is caused by the behavior ofP2

1 (0,P2
1!1 for

0,d̆2
1/s!1).

In order to evaluate Eq.~3.6a!, the coefficientP1
1 must be

estimated. The coefficientsPi
n satisfying the relations given

by Eqs.~3.4a!–~3.4c! can be derived from Eq.~2.9f!, and are
expressed as

12e2 z̆s
k̆

z̆

d̆

s
f1F1

2
S d̆

s
D 2

e2 z̆s1
1

z̆s

d̆

s
~12e2 z̆s!P1

1

1
1

2
~ez̆s221e2 z̆s!~P1

1!2G 2

2F1

2
S d̆

s
D 2

e2 z̆s1
1

z̆s

d̆

s

3~12e2 z̆s!P1
11

1

2
~ez̆s221e2 z̆s!~P1

1!2GP1
1

1
e2 z̆s/2~P1

1!2

2z̆s
F ~ez̆s221e2 z̆s!P1

11 z̆s
d̆

s
~22e2 z̆s!G50,

~3.7a!
2-8



er
te

.

,

-

s.

CONTRIBUTION OF PHYSICAL CLUSTERS TO PHASE . . . PHYSICAL REVIEW E 66, 051502 ~2002!
P2
1'0, P1

2'0, and P2
2'0. ~3.7b!

The coefficientP2
1 can be ignored for 0,d̆2

1/s!1 as known
from Eq. ~3.7b!. As a result, Eq.~3.7a! does not includef2,
although it is a formula derived forf2Þ0. Therefore,P1

1 is
independent off2.

In addition,P1
2 andP2

2 for z̆2s@1 can behave as

z̆2s

~d̆/s!
ez̆2sP1

2' z̆sP1
1F d̆

s
2

1

z̆s
P1

1GF1

2
S d̆

s
D 2

e2 z̆s

1
1

z̆s

d̆

s
~12e2 z̆s!P1

1

1
1

2
~ez̆s221e2 z̆s!~P1

1!2G21

, ~3.8!

3. The percolation threshold

The percolation threshold for the fluid mixture charact
ized by Eqs.~3.4a!–~3.4c! is determined as a particular sta
s

l,

05150
-

at which the mean physical cluster sizeS expressed by Eq
~2.13! diverges to infinity. The magnitude ofP1

1 at the per-
colation threshold can be given as

P1
15 z̆s

d̆

s
@~ z̆s!2~ez̆s221e2 z̆s!22ez̆s12z̆s12#21

3$z̆s1e2 z̆s2$@12~ z̆s!2#~e2 z̆s22!e2 z̆s12%1/2%.

~3.9!

Equation~3.9! is derived forf2Þ0. It does not, however
includef2, since terms withP2

1 can be ignored owing to 0

,P2
1!1 for 0,d̆2

1/s!1. Therefore, the percolation thresh
old determined by Eqs.~3.7a! and ~3.9! is independent of
f2.

4. The pair correlation function gij „s…

For a two-component fluid mixture specified by Eq
~3.1!–~3.2c!, Eq. ~A1! can be simplified as
gi j ~s!'
1

D
1

3

2

f11f2

D2 2
1

6H 2
12

D F 3

D
~f11f2!

1

zs
1

1

zs
2

1

2GF 1

zsS 2
1

2
1

1

zs
2

e2zs

2
2

e2zs

zs D (
k51

2

fke
zsBk

(1)

1S 1

2
1

1

zs D d

s
f1G1

3

D
F0~zs!(

k51

2

fke
zsBk

(1)1
3

D
f1

d

s
2S di

(1)

s
2

e2zs

zs
ezsBi

(1)D zsJ H ezsBj
(1)2

12

D S 11
1

2
zs

1
3

D
~f11f2! D 11zs/2

~zs!2 f1

d

s
1

3

D
f1

d

s
2

3

D F4S 11
1

2
zs1

3

D
~f11f2! DC1~zs!1F0~zs!G (

k51

2

fke
zsBk

(1)J
3H (

l 51

2

f lFdl
(1)

s
2

12~11zs/2!

D~zs!2 f1

d

s
1F0~zs!ezsBl

(1)2
12

D
C1~zs!(

k51

2

fke
zsBk

(1)G2J 21

, ~3.10!

whereD[12( l 51
L f l , (L52), C1(zs)[(zs)23@12zs/22(11zs/2)e2zs#, andF0(zs)[(zs)21(12e2zs).

A coefficient expressed asBi
(n) in Eq. ~3.10! is defined as

zns ie
zns iBi

(n)[12(
l 51

L
f l

dl
(n)

s l

zns i

~zns l !
2 e2znl i l ezns lF E

0

`

e2tgil ~t/s!tdtG
s5zn

. ~3.11a!
The coefficientBi
(n) defined by Eq.~3.11a! must always be

positive, sincedi
(n)/s i should be positive for arbitrary value

of i andn.
According to Eq.~3.11a!, this coefficient should be smal

if the effective range characterized by 1/zn is short. In fact,
Eqs.~A2a! and ~A3a! for n52 result in

lim
z2→`

ez2sBj
(2)50. ~3.11b!
Thus, the coefficientsB1
(2) and B2

(2) are not included in Eq.
~3.10!. The above relation helps readily to derive Eq.~3.10!

from Eq.~A1!. In addition, even a productz2sez2sBj
(2) has a

finite value as lim
z2s→`

@z2sez2sBj
(2)#,`, according to Eqs.

~A2a! and ~A3a!.

Equation~A2a! for n51 and j 51 and Eq.~A2a! for n
51 and j 52 can result in two equations given as
2-9
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0'6
k

z

d

s
e2zsF(

l 51

2

f lS dl
(1)

s
2

12~11zs/2!

D~zs!2 f1

d

s
1F0~zs!ezsBl

(1)2
12

D
C1~zs!(

k51

2

fke
zsBk

(1)D 2G2

1 (
h51

2
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Thus, the coefficientsB1
(1) and B2

(1) in Eq. ~3.10! can be
assessed using Eqs.~3.12a!, ~3.12b!, and~3.12c!.

However, values being suitable forB1
(1) and B2

(1) should
be selected. The correlation functiong12(r ) should be pro-
portional to the probability that ani 52 particle exists in a
volume elementdr2 located at a particular place specified
05150
a distancer from an i51 particle. Hence,g12(r ) should be-
come zero, wheni 52 particles separate from a macrosco
cally homogeneous phase mixed withi 51 particles. Near a
point at which this phase separation occurs,g12(r ) should
extremely rapidly decay to zero asr increases. The coeffi
cient B2

(1) is an integral involvingg12(r ) as an integrand, as
2-10
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known from Eq. ~3.11a! with coefficients given by Eq.
~3.2b!. The coefficientB1

(1) is an integral involvingg11(r ) as
an integrand, as known from Eq.~3.11a! with coefficients
given by Eq.~3.2b!. Therefore,B2

(1) should be much smalle
than B1

(1) , when the phase separation ofi 52 particles oc-
curs.

In addition, numerical pairs ofB1
(1) and B2

(1) assessed
from Eqs.~3.12a!–~3.12c! for a parameter such ask can be
separated into at least two groups. A group includes a
merical pair satisfyingB2

(1)/B1
(1)!1 for a specific value ofk.

The other does not include such a numerical pair: numer
pairs ofB1

(1) andB2
(1) assessed for all the values ofk do not

include special pairs satisfyingB2
(1)/B1

(1)!1. These facts
mean that the former can describe the phase separationi
52 particles although the latter cannot. Therefore, numer
pairs belonging to the former group can be valid.

B. Evaluations of correlation functions

1. The pair connectedness evaluated from Eq. (3.6a)

The pair connectednessPi j (r ) is proportional to the prob-
ability that ani particle and aj particle belong to the sam
physical cluster. Hence, the pair connectednessPi j (s) given
by Eq. ~3.6a! is proportional to the probability that ani par-
ticle is bound near aj particle.

The pair connectednessPi j (s) at the percolation thresh
old can be assessed from Eqs.~3.6a!, ~3.7a!, and~3.9! which
are formulas obtained by exactly solving the integral eq
tion system constructed from Eq.~2.1! and the closure rep
resented by Eq.~2.7c!. The pair connectednessPi j (s) as-
sessed from Eqs.~3.6a!, ~3.7a!, and ~3.9! can depend on a
parameterf c that expresses the characteristics of the clos
represented by Eq.~2.7c! with Eqs.~2.7e! and ~2.7f!. When
the closure represented by Eq.~2.7c! is specified forf c51,
the closure somewhat overestimates the long-ranged co
bution of Ci j

1(r ) given by Eq.~2.6!. When the closure is
specified forf c5e1/2, it somewhat overestimates the dec
of Ci j

1(r ) dependent onr. Fortunately, values ofPi j (s) as-
sessed from Eqs.~3.6a!, ~3.7a!, and ~3.9! for f c51 can
hardly differ from those forf c5e1/2, unlesszs is too small.
This is demonstrated by diagrams of Fig. 1 drawn from v
ues ofPi j (s) assessed at the percolation threshold of e
fluid mixture. Therefore, the pair connectednessPi j (s) de-
rived from the use of the closure represented by Eq.~2.7c!
can well approximate that derived from the use of the clos
given by Eq.~2.6!, unlesszs is too small.

In addition, if the magnitudes off1 ,kd2/s, andzs sat-
isfy either Eqs.~3.7a! or ~3.9!, then, the magnitudes are e
pressed as (f1)p ,(kd2/s)p , and (zs)p . Thus, they repre-
sent the values off1 , kd2/s, and zs at the percolation
threshold. Similarly, quantities and coefficients given at
percolation threshold are expressed as those having the s
p.

2. A contribution of physical clusters to phase behavior

A physical cluster composed of particles bound to ea
other satisfying the conditionEi j 1ui j <0 should be a dens
region of i 51 particles. Moreover, it is possible for eac
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physical cluster to have a fractal structure, since an appr
mate behavior ofPi j (r ) for r @1 can be expressed a
Pi j (r );@2bui j (r )#3/2 @10#. Branches constructing suc
physical clusters should be developed in a fluid mixture
f1 increases, since they should stabilize for the increas
f1.

The development of the branches suggests that
branches confine unbound particles~i.e., particles constitut-
ing pairs characterized by an unbound stateEi j 1ui j .0)
within regions surrounded by them. This view is realiz
through using Eqs.~3.6a! and~3.7a!. Values ofP1

1 evaluated
by Eq.~3.7a! can satisfy the relation 0,P1

1!1 under various
conditions. If this relation is considered, Eq.~3.7a! can be
approximated as

6
k̆

z̆
S d̆

s
D 3

f1'
1

2
e2z̆sP1

11
e3z̆s

2z̆s
S d̆

s
D 21

@2~12e2 z̆s!

1 z̆se2 z̆s/2~22e2 z̆s!#~P1
1!2. ~3.13!

If the relation 0,P1
1!1 is considered with Eqs.~2.7e! and

~2.7f!, the substitution of Eq.~3.13! to Eq. ~3.6a! leads to

P11~s!'
8

3Ap
S kd2

s D 3/2

e23zs f c
21@11W~ f c!f1#,

~3.14a!

where

W~ f c![
48

3Ap
S kd2

s D 3/2 f c
21/2 exp@2~9/4!zs#

~3/2!zs1 ln f c

3H 12
1

2

f c
21/2 exp@2~3/4!zs#

~3/2!zs1 ln f c

2
1

2
f c

21 exp@2~3/2!zs#J . ~3.14b!

In Eq. ~3.14a!, the productW( f c)f1 can satisfy the relation
0,W( f c)f1!1 under various conditions. Thus, the pa
connectednessPi j (s) hardly varies asf1 increases, al-
though the mean physical cluster size diverges to infinity
the percolation threshold. Hence, each physical clu
should grow toward that having a larger span asf1 in-
creases. Such growth of physical clusters means that an
crease inf1 enhances the number of unbound particles c
fined by branches of the physical clusters. In addition, ev
diagram expressingPi j (s) in Figs. 2~1a!–2~4b! demon-
strates thatPi j (s) hardly varies asf1 increases.

The parameterf c found in Eq.~3.14a! specifies the char-
acteristics of the closure given as Eq.~2.7c!. The closure
specified forf c51 somewhat overestimates the long-rang
contribution of Ci j

1(r ) given by Eq.~2.6!, and the closure
specified forf c5e1/2 somewhat overestimates the decay
Ci j

1(r ) dependent onr. Nevertheless, Eq.~3.14a! shows that
a change in magnitude ofP11(s) can approximately corre
spond to only a variation resulting fromf c

21 owing to the
relation 0,W( f c)f1!1. This means that the pair connec
2-11
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ednessPi j (s) derived from the use of the closure repr
sented by Eq.~2.7c! leads to the same behavior as that d
rived from the use of the closure given by Eq.~2.6!.
Therefore, it should be inferred that the growth of physi
clusters due to an increase inf1 enhances the number o
unbound particles confined by branches of the physical c
ters, even if the closure given by Eq.~2.6! is used.

Unbound i 51 particles within regions surrounded b
branches of physical clusters should become denser
those outside of the regions, if their branches prohibit
boundaries of the regions from expanding freely. This me
that densities of unboundi 51 particles in the regions shoul
be enhanced, and as a result, their densities outside o
regions should be reduced. If a contribution of the latter t
decrease ing11(s) is more dominant than that of the forme
to an increase ing11(s), the value ofg11(s) should decrease
as f1 increases. Such behavior can be realized from d
grams of Figs. 2~1a!–2~4b!. Therefore, it is inferred that the
branches of the physical clusters should prohibit the bou
aries of the regions from expanding freely.

In addition, values of (f1)p assessed from Eqs.~3.7a! and
~3.9! for f c51 can differ from those assessed forf c5e1/2.
Fortunately, these differences can become small, ifzs is
large. If Eqs.~2.7e! and ~2.7f! are considered with the rela
tions 0,P1

1!1 and 1!zs, the substitution of Eq.~3.9! to
Eq. ~3.13! leads to

~f1!p'
3Ap

16 S kd2

s D 23/2

zs exp@~3/2!zs#

3H 12
2

3
~21A22 ln f c!

1

zs
1 •••J . ~3.15!

This equation demonstrates that the difference between
ues of (f1)p evaluated forf c51 and for f c5e1/2 decreases
aszs increases. This behavior can also be realized from
comparison between diagrams of Figs. 2~1a! and 2~2b!.
Therefore, ifzs is large, values of (f1)p derived from the
use of the closure given by Eq.~2.6! can be well approxi-
mated by values of (f1)p derived from the use of the closur
given by Eq.~2.7c!.

The formation of physical clusters cannot directly
helped byi 52 particles. There is no attractive force betwe
two of the i 52 particles, and they also behave as hard co
in the absence of an attractive force between ani 51 particle
and ani 52 particle. Hence,i 52 particles should distribute
with unbound i 51 particles among branches of physic
clusters. Thei 52 particles can, then, be confined with th
unboundi 51 particles within regions surrounded by the
branches and their distribution should contribute to the m
nitude ofDi j (r ).

An increase inf2 should enhance local densities ofi
51 particles in microscopically local areas surrounded
branches of physical clusters. This effect can increase
value of D11(s), so that this increase can result in an i
crease ing11(s). Such behavior can be realized from com
parisons between diagrams of Figs. 2~1a! and 2~1b! and be-
tween those of Figs. 2~2a! and 2~2b!. In addition, diagrams
of Fig. 2~1b! demonstrate that even the phase separatio
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i 51 particles from the fluid mixture can occur owing to th
increase inf2.

In a fluid mixture, i 52 particles can always receive
passively attractive force generated from the cooperation
tween the exclusion ofi 52 particles due to the hard cor
potential (r ,s) and an attractive force betweeni 51 par-
ticles. Such passively attractive force should contribute
stuffing manyi 52 particles within a region surrounded b
branches of physical clusters. However,i 52 particles in the
region should have a tendency to get larger values of the
Ei j 1ui j when comparing withi 51 particles, since there is
no attractive force amongi 52 particles. Hence, it is difficult
for a large number ofi 52 particles to be retained in th
region. Then, the stability of physical clusters disturbed
an increase inf2 must be regained by redistributingi 52
particles into a large number of regions surrounded
branches of physical clusters. Such behavior can lead
decrease ing22(s), and can be realized from a compariso
between diagrams of Figs. 2~2a! and 2~2b! since the values
of g22(s) at f150.4 are given asg22(s)75.94 for f2
50.025 andg22(s)75.43 forf250.05.

A passively attractive force generated from the coope
tion between the exclusion ofi 52 particles due to the hard
core potential and an attractive force betweeni 51 particles
should depend on the diameter of the hard core of ani 52
particle and the effective range of the attractive force. Hen
it is expected that particles contributing principally to th
magnitude ofDi j (r ) can contribute to phase behavior of
fluid mixture through their particle sizes. If such particles a
small, they can be relatively stably confined within regio
surrounded by branches of physical clusters. If the partic
have larger sizes than those of the regions, it is expected
the addition of the particles into the fluid mixture can i
crease the unstabilization of a macroscopically homogene
phase.

If specific particles interacting through only their ha
core potentials are much larger than regions surrounded
branches of physical clusters, it is difficult for these partic
to be stably retained in the regions. Despite this fact, it
expected that the particles can form a macroscopically
mogeneous phase owing to their diffusion into areas am
the physical clusters, if the average extent of the phys
clusters is smaller than the sizes of the particles. Colloi
particles have mesoscopic sizes. Although the colloidal p
ticles are hard core spheres in the absence of attrac
forces, it is expected that they can be distributed into a m
lecular fluid mixture. Then, the average extent of physi
clusters formed in the molecular fluid mixture must
smaller than the sizes of the colloidal particles. If the phy
cal clusters develop near a specific temperature, then,
sively attractive forces generated between two of the col
dal particles should be strengthened. Such attractive fo
may contribute to Casimir forces that can act between c
loidal particles immersed within a binary fluid mixture ne
the consolute point@8#.

If branches of physical clusters have sufficiently high s
bility and make the physical clusters large, it is expected t
i 52 particles being the same size asi 51 particles can be
stably retained in regions surrounded by the branches. T
the phase separation ofi 52 particles from a mixture fluid
should be prevented.
2-12
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Even at a high temperature, the stabilized branches
stably confine unbound particles ofi 51 particles withi 52
particles within regions surrounded by the branches. Phys
clusters with the stabilized branches can grow toward m
roscopic sizes. Thus, it is expected that a fluid includ
physical clusters of a percolation state should preserve
liquid phase even at a high temperature.

The stability of branches of physical clusters should
crease, as the volume fraction (f1) of i 51 particles, the
strength of the attractive force~proportional tokd2/s), and
its effective range@proportional to (zs)21] increase. There-
fore, a macroscopically homogeneous phase can be s

FIG. 1. The pair connectedness@P11(s)#p for the two compo-
nent mixture fluids characterized by Eqs.~3.1!–~3.2c!. To assess
@P11(s)#p , Eq.~3.6a! is used with Eqs.~3.7a! and~3.9!. The values
of @P11(s)#p should be considered as those assessed forf2 having
an arbitrary value different from zero. Here,f2 is the volume frac-
tions of i 52 particles. Solid lines representf c51; open circles and
solid circlesf c5e1/2. In addition,f1 , zs, P11(s), andkd2/s are
dimensionless.
05150
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lized, if f1 ,kd2/s, and (zs)21 have large values. Such phe
nomenon is suggested by diagrams of Figs. 2~3a! and 2~3b!.

If the effective range of an attractive force between two
i 51 particles is decreased, the stability of branches of ph
cal clusters is reduced. Ifkd2/s is large, then, it is possible
to raise the probability that thei 51 particles which have
approached each other satisfy a bound stateEi j 1ui j <0. A
percolation state of a fluid mixture due to thei 51 particles
can be generated, although the effective range of an att
tive force between two of thei 51 particles is considerably
narrow in comparison with their hard core diameter.

In addition, the attractive force acting between two of t
i 51 particles is sharply strengthened near the surface
eachi 51 particle. This means that the movement of thei
51 particles which have approached each other should
rapidly strongly restricted by the attractive force. This effe
due to the attractive force can be derived from a slight
crease inf1. The characteristic of the attractive force ca
make the fluid mixture undergo a change from a macrosc
cally inhomogeneous phase to a macroscopically homo
neous phase and the phase separation ofi 51 particles after
the change, asf1 increases slightly. Thus, a macroscopica
homogeneous phase of the fluid mixture can be sensitiv
influenced by a small change inf1. Moreover, the attractive
force can make the percolation threshold approach to a
ticular point at which the phase separation ofi 51 particles
from the fluid mixture takes place. When the density oi
51 particles is low, the contribution of the attractive forc
towards making ani 51 particle approach anotheri 51 par-
ticle is more important than that when their density is hig
Therefore, those characteristic effects due to the attrac
force should be revealed from phase behavior occurring
low density ofi 51 particles, as is demonstrated by diagra
of Figs. 2~4a! and 2~4b!.

3. A macroscopically homogeneous phase of iÄ2 particles
induced at the percolation threshold

Values of B1
(1) and B2

(1) assessed from Eqs.~3.12a!–
~3.12c! for a specific attractive force can satisfyB2

(1)/B1
(1)

!1 at the percolation threshold. A specific attractive for
resulting inB2

(1)/B1
(1)!1 at the percolation threshold can b

given by coefficients having values found from Fig. 3~1!.
When a fluid composed ofi 51 particles interacting with the
specific attractive force reaches the percolation thresh
branches of physical clusters can retain a specific amoun
i 52 particles in the fluid. It is expected that such a pheno
enon can contribute to hydrodynamical transport phenom
such as the viscosity anomaly found from a fluid mixture
cluding particles similar toi 52 particles. In addition, dia-
grams of Fig. 3~2! express the magnitudes of correlatio
functions for each fluid in which a specific amount (f2
50.05) of i 52 particles can be macroscopically homog
neously mixed just at the percolation threshold.

Although the number ofi 51 particles bound to each
other satisfying the conditionEi j 1ui j <0 should decrease a
f1 is reduced, it is possible to maintain a percolation state
2-13
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FIG. 2. Correlation functionsP11(s), g11(s), g12(s), andg22(s) for the two component mixture fluids characterized by Eqs.~3.1!–
~3.2c!. The values ofP11(s) are those assessed forf c51 ~except for two thin lines! andf2 having an arbitrary value different from zero
The values ofP11(s) andgi j (s) are those assessed through using Eqs.~3.6a! and~3.10! with Eqs.~3.7a!, ~3.9!, and~3.12a!–~3.12c!. Open
triangles represent the magnitudes of correlation functions at the percolation threshold; open circles represent limits of solutions pr
Eq. ~3.7a!; open squares represent limits of solutions provided by Eqs.~3.12a! and~3.12b!; solid squares represent points derived from t
conditionB2

(1)/B1
(1)!1. In addition,f1 , f2 , zs, P11(s), andkd2/s are dimensionless.
051502-14
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the ratio of their number to the total number ofi 51 particles
enhances asf1 is reduced. An increase in the ratio shou
lead to an increase in@P11(s)#p . Then, the percolation stat
is maintained at a small value off1, while @g11(s)#p in-
creases owing to the increase in@P11(s)#p . However, the
increase in the ratio can result in decreases in local dens
of unboundi 51 particles, so thati 52 particles can distrib-
ute away from each other. Thus,@g12(s)#p and @g22(s)#p
can decrease. These phenomena can be realized from
grams of Fig. 3~2!. Such phenomena suggest that physi
clusters confinei 52 particles and unboundi 51 particles.

Ultimately, the formation of physical clusters can be co
sidered as a primary phenomenon resulting in density fl
tuations in a multicomponent fluid mixture, and should co
tribute to complicating a phase diagram for the fluid mixtu

IV. CONCLUSIONS

Constituents of a multicomponent fluid mixture can
classified into two groups~groupA and groupB). Particles
belonging to the groupA ~particles ofA) have a tendency to
satisfy the conditionEi j 1ui j <0. Particles belonging to the
other groupB ~particles ofB) have a tendency to satisfy th
condition Ei j 1ui j .0. Thus, i 51 particles correspond to
particles ofA, and i 52 particles correspond to particles
B. A major contribution to the magnitude ofPi j (r ) can result
from the distribution of particles ofA. The distribution of
particles ofB should principally contribute to the magnitud
of Di j (r ).

Each physical cluster composed of particles bound to e
other satisfying the conditionEi j 1ui j <0 should be a dens
region of particles ofA in the fluid mixture. Branches con
structing such physical clusters can confine unbound
ticles ~i.e., particles constituting pairs characterized by
unbound stateEi j 1ui j .0) within regions surrounded b
them. Each physical cluster can grow toward that havin
larger span as densities of particles ofA increase, since
Pi j (s) hardly varies for increases in their densities. Th
growth of physical clusters can enhance the number of
bound particles confined by branches of the physical clust

Local densities of particles within regions surrounded
branches of the physical clusters should be lower than lo
particle densities of the physical clusters, since unbound
ticles are confined within the regions. Then, their branc
must prohibit the boundaries of the regions from expand
freely. The confinement of unbound particles means that
physical clusters can contribute to prohibiting a transit
from a macroscopically homogeneous phase of a multic
ponent fluid mixture to its macroscopically inhomogeneo
phase.

If particles ofA are added into a fluid, it is possible th
addition of the particles increases the stabilization of phy
cal clusters. The phase separation of particles ofB from a
mixture fluid should, then, be prevented, since stabiliz
branches of physical clusters can retain the particles ofB in
regions surrounded by the branches.

Since particles ofB should distribute with unbound par
ticles of A within regions surrounded by branches of phy
cal clusters, an increase in the number of particles oB
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should enhance local densities of particles ofA in micro-
scopic areas of the regions. Since the hard core potentia
particles ofA and B contribute to this phenomenon, suc
size effects due to particles can drive into the phase sep
tion resulting from the addition of particles ofB.

The formation of physical clusters of particles ofA can be
considered as a primary phenomenon resulting in den
fluctuations. Then, the confinement of particles ofB andA
within regions surrounded by the branches of the phys
clusters can be regarded as a secondary phenomenon.
mately, such phenomena can complicate phase behavior
fluid mixture.

APPENDIX: THE PAIR CORRELATION FUNCTION

For the potential given as Eq.~2.5!, the Ornstein-Zernike
equation can be analytically solved@15,16#. By modifying
the solutions@15,16# given for the potential, the correlatio
function gi j (r ) can be given as

FIG. 3. Correlation functions @P11(s)#p , @g11(s)#p ,
@g12(s)#p , and @g22(s)#p assessed under the conditionB2

(1)/B1
(1)

!1 for the two component mixture fluids characterized by E
~3.1!–~3.2c!. The values of@P11(s)#p are those assessed forf c

51 andf2 having an arbitrary value different from zero. The va
ues of@g11(s)#p , @g12(s)#p , and@g22(s)#p are those assessed fo
f250.05. The values of@P11(s)#p and @gi j (s)#p are those as-
sessed through using Eqs.~3.6a! and~3.10! with Eqs.~3.7a!, ~3.9!,
and ~3.12a!–~3.12c!. Diagrams of~1! represent values of coeffi
cients specifying particular forces that induce percolation states
stricted by the conditionB2

(1)/B1
(1)!1. In addition,f1 , f2 , zs,

P11(s), andkd2/s are dimensionless.
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where the coefficientM jkl
mn in Eq. ~A2a! are definded as

M jkl
mn[

1

~zn1zm!s j

1

zmsk

1

zms l
e2znl jke2zml lk

zns l

znsk
H FF0~zns j !d l j 2

12

D
f l S zns j

zns l
D 3

C1~zns j !GF dl
(m)/s l

dk
(m)/sk

zms le
zms lBl

(m)

dl
(m)/s l

2zms l

12

D S 11
1

2
zms l1

3

D (
h51

L
fh

zms l

zmsh
D (

t51

L
f t

11zms t/2

~zms t!
2

dt
(m)/s t

dk
(m)/sk

e2zml t l1
3

D (
h51

L
fhzms l

zms l

zmsh

dh
(m)/sh

dk
(m)/sk

e2zmlhl

2S 11
1

2
zms l1

3

D (
h51

L
fh

zms l

zmsh
D 12

D (
h51

L
fhC1~zmsh!

dh
(m)/sh

dk
(m)/sk

zms l

zmsh
zmsh

ezmshBh
(m)

dh
(m)/sh

e2zmlhl

1
3

D (
h51

L
fh

zms l

zmsh
F0~zmsh!

dh
(m)/sh

dk
(m)/sk

zms l

zmsh
zmsh

ezmshBh
(m)

dh
(m)/sh

e2zmlhl2~zms l !
2

3 (
h51

L S d lh2
12

D
fh

11zmsh/2

~zmsh!2 Ddh
(m)/sh

dk
(m)/sk

e2zmlhl2zms l (
h51

L S F0~zms l !d lh

2
12

D
fhC1~zmsh! Ddh

(m)/sh

dk
(m)/sk

zms l

zmsh
zmsh

ezmshBh
(m)

dh
(m)/sh

e2zmlhlG2F zms l (
h51

L S d lh2
12

D
fh

11zmsh/2

~zmsh!2 Ddh
(m)/sh

dk
(m)/sk

e2zmlhl

1 (
h51

L S F0~zms l !d lh2
12

D
fhC1~zmsh! Ddh

(m)/sh

dk
(m)/sk

zms l

zmsh
zmsh

ezmshBh
(m)

dh
(m)/sh

e2zmlhlG Fd l j 1
3

DS zns j

zns l
D 2

f lF0~zns j !

2
12

D S zns j

zns l
D 3

f lC1~zns j !S 11
3

D (
h51

L
fh

zns l

znsh
1

1

2
zns l D G J . ~A2b!

For N52, the factorzns je
2zns j /2aj

(n)/s j in Eq. ~A2a! in Eq. ~A2a! can be given as

zns je
2zns j /2

aj
(n)

s j
5

1

Y (
m51

2

~21!n1mYj
32m,32nV j

m , ~A3a!

where
051502-16



CONTRIBUTION OF PHYSICAL CLUSTERS TO PHASE . . . PHYSICAL REVIEW E 66, 051502 ~2002!
Y[Yj
1,1Yj

2,22Yj
1,2Yj

2,1 , ~A3b!

Yj
n,m[

6

p

zns j

zms j
(
l 51

2

f l

zms j

~zn1zm!s l
e2(zn1zm)l l j F (

k51

2

e2znlklS d lk2
12

D
fk

11znsk/2

~znsk!
2 Ddk

(n)

sk

1 (
k51

2

e2znlklS F0~zns l !d lk2
12

D
fkC1~znsk! DeznskBk

~n!G
3F V l

m

~zms l !
2

1 (
h51

2

e2zmlhlS d lh2
12

D
fh

11zmsh/2

~zmsh!2 D dh
~m!

sh

1 (
h51

2

e2zmlhlS F0~zms l !d lh 2
12

D
fhC1~zmsh!D ezmshBh

~m!G
2

6

p

zns j

zms j
(
l 51

2

f l

zns j

~zn1zms l
e2~zn1zm!l l j F (

k51

2

e2zmlklS d lk2
12

D
fk

11zmsk/2

(zmsk)
2 D dk

~m!

sk

1 (
k51

2

e2zmlkl S F0~zms l !d lk 2
12

D
fkC1~zmsk!D ezmskBk

~m!G V l
n

~zns l !
2

, ~A3c!

V j
n[

3

D (
l 51

2 F4S 11
3

D (
k51

2

fk

zns j

znsk
1

1

2
zns j D 11zns l /2

zns l
2zns j Gf l

zns j

zns l

dl
(n)

s l
e2znl l j 2

3

D (
l 51

2 F S 3

D

zns j

zns l
e2znl l j D 21

d l j

24S 11
3

D (
k51

2

fk

zns j

znsk
1

1

2
zns j Df lC1~zns l !1f l

zns j

zns l
F0~zns l !G zns j

zns l
e2znl l j zns le

zns lBl
(n) . ~A3d!

For a two-component fluid mixture specified by Eqs.~3.1!–~3.2c!, Eq. ~A3a! can be simplified as
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